一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。
解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。
1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。
1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==----12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。
令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。
则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。
212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。
故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。
将乘客乘坐公共汽车1代表试验成功,那么有:121111111211212(1=()()N N N N k N k k N P C λλλλλλ+----=++∑路汽车比2路汽车先出发)(2)当1N =2N 、1λ=2λ时2121111111111(1=()()2222N N N k N k k k k N k N P CC -------====∑∑路汽车比2路汽车先出发)3.3设{(),0}i N t t ≥,(1,2,,)i n =L 是n 个相互独立的Poisson 过程,参数分别为i λ(1,2,,)i n =L 。
记T 为全部n 个过程中,第一个事件发生的时刻。
(1)求T 的分布; (2)证明1{()(),0}n i i N t N t t ==≥∑是Poisson 过程,参数为1ni i λλ==∑;(3)求当n 个过程中,只有一个事件发生时,它是属于1{(),0}N t t ≥的概率。
解:(1)记第i 个过程中第一次事件发生的时刻为1i t ,1,2,...,i n =。
则1min{,1,2,...,}i T t i n ==。
由1i t 服从指数分布,有111111{}1{}1{min{,1,2,...,}}1{,1,2,...,}1{}1{1(1)}1exp{}i i ni i i nnti i i P T t P T t P t i n t P t t i n P t t et λλ=-==≤=->=-=>=->==->=---=--∏∑∏(2)方法一:由{(),1,2,...,}i N t i n =为相互独立的poisson 过程,对于,0s t ∀≥。
11111{()()}{[()()]}{()(),,1,2...,}(exp(()))!()exp(())!n ni in ni ni i i iiiinnn ni i i i i n ni ni i i P N t s N t n P N t s N t n P N t s N t n nn i n ss n s s n λλλλ=∑=∑=====+-==+-==+-====-=-∑∑∑∑∑∏∑∑这里利用了公式11(...)!!in ni nnni n i i n n λλλ=∑=++=∑∏所以1{()(),0}n i i N t N t t ==≥∑是参数为1ni i λλ==∑的poisson 过程。
方法二: ○1当0h →时,11111{()()1}{[()()]1}{(())(1())}[()]()ni i i nn i j i j j inni i i i P N t h N t P N t s N t h o h h o h h o h h o h λλλλ===≠==+-==+-==+-+=+=+∑∑∏∑∑○2当0h →时, 111111{()()2}{[()()]2}1{[()()]2}1(1())()1(1())()()ni i i ni i i n nj i i j n ni i i i P N t h N t P N t s N t P N t s N t h o h h o h h o h h o h o h λλλλ======+-≥=+-≥=-+-<=--+-+=--+-+=∑∑∑∏∑∑得证。
(3)11{()1|()1}{()1,()0,2,...,}/{()1}i P N t N t P N t N t i n P N t ======= 1111121/...ni i i nnttti i i nteeet λλλλλλλλ=---==∑==++∑∏3.4 证明poisson 过程分解定理:对于参数为λ的poisson 过程{(),0}N t t ≥,01i p <<,11ri i p ==∑,1,2,,i r =L ,可分解为r 个相互独立的poisson 过程,参数分别为i p λ,1,2,,i r =L 。
解:对过程{(),0}N t t ≥,设每次事件发生时,有r 个人对此以概率12,,...,r p p p 进行记录,且11ri i p ==∑,同时事件的发生与被记录之间相互独立,r 个人的行为也相互独立,以()i N t 表示为到t 时刻第i 个人所记录的数目。
现在来证明{(),0}i N t t ≥是参数为i p λ的poisson 过程。
00{()}{()|()}{()}()(1)()!()!i i i n m n m mntm ni i n mp ti P N t m P N t m N t m n P N t m n t Cp p em n p t em λλλλ∞=+∞-+=-====+=+=-+=∑∑独立性证明:考虑两种情况的情形,即只存在两个人记录, 一个以概率p ,一个以概率1p -记录,则1{(),0}N t t ≥是参数为p λ的poisson 过程,2{(),0}N t t ≥是参数为(1)p λ-的poisson过程。
121121212121212112211121211121212121212{(),()}{(),()}{()}{()|()}()(1)()!()!()(1)()!!!()(1)!!(k k k k k t k k k k k k t k k k k t P N t k N t k P N t k N t k k P N t k k P N t k N t k k t e C p p k k k k t e p p k k k k t e p p k k pt λλλλλλλ+-++-+-=====+==+==+=-++=-+=-=12(1)121122)((1))!!{()}{()}k k t p t p t e ek k P N t k P N t k λλλ----===得证。
3.5 设{(),0}N t t ≥是参数为3的poisson 过程,试求 (1){(1)3}P N ≤; (2){(1)1,(3)2}P N N ==; (3){(1)2|(1)1}P N N ≥≥解:(1)33303{(1)3}13!kk P N e e k --=≤==∑ (2){(1)1,(3)2}{(1)1,(3)(1)1}P N N P N N N ====-=369{(1)1}{(3)(1)1}3618P N P N N e e e ---==-===(3)33{(1)2}14{(1)2|(1)1}{(1)1}1P N e P N N P N e--≥-≥≥==≥- 3.6 对于poisson 过程{(),0}N t t ≥,证明s t <时,{()|()}P N s k N t n ===(1)()n k k n s sk t t -⎛⎫- ⎪⎝⎭解:(){(),()}{()|()}{()}{(),()()}{()}{()()}{()}{()}(())()()!!()!()!()!!()n k kt s s nt n k k nn k k P N s k N t n P N s k N t n P N t n P N s k N t N s n k P N t n P N t N s n k P N s k P N t n t s s e en k k t en t s s n n k k t n t s s k λλλλλλ-------=======-=-==-=-===--=-=-⎛⎫-= ⎪⎝⎭(1)()n k k n k kt t n s s k t t --⎛⎫=- ⎪⎝⎭3.7 设1{(),0}N t t ≥和2{(),0}N t t ≥分别是参数为1λ,2λ的Poisson 过程,另12()()()X t N t N t =-,问{()}X t 是否为Poisson 过程,为什么?解:不是12()()()X t N t N t =-,()X t 的一维特征函数为:121212121122(()())()()()()120012001212()()()()()()!!()()!!exp{(iuiu iu N t N t iuN t iuN t iuX t X t k k t tiukiuk k k iu k iu ktt k k t et t e tiu iu f u E e E e E e e t t ee e e k k e t e t ee k k e e e ee t e t λλλλλλλλλλλλλλλλ--∞∞--==∞∞--==---=====⋅==+-+∑∑∑∑)}t参数为λ的Poisson 过程的特征函数的形式为exp{1}iu e t λ-,所以()X t 不是poisson 过程。