神经 内分泌与免疫调节网络
下丘脑的位置、结构及联系保证了它对全身内分泌器官的
直接和间接控制。
视交叉
视神经
位置
垂体
背侧丘脑下方。
视束
灰结节
外形
视交叉 视束 灰结节。 乳头体 漏斗 垂体。
室旁核 前核
视前内侧核和 视前外侧核
视上核
下丘脑后核 下丘脑背内侧核 下丘脑腹内侧核
乳头体核 弓状核
下丘脑的分区及主要核团
自前至后分为:
视前区:视前核 视上区:视上核
具体例子:
环境改变、焦虑,均可引起闭经;精神紧张可致肾上腺皮 质激素的分泌量明显增加。
糖皮质激素对治疗大多数自身免疫病有效,说明糖皮质激 素和性激素与免疫系统存在着直接或间接的联系。
某些中枢神经核团或区域参与对机体免疫功能的调节,如 可改变外周血中单核细胞吞噬能力及循环血中抗体深度等。 机体接受抗原刺激后,脑内某些区域神经元放电发生改变。
结节垂体束 神经垂体
垂体前叶
1)视上核: 视上垂体束—垂体后 叶(神经垂体)
2)室旁核 室旁垂体束 — 垂体后叶(神经垂体),分泌加压素、催产素等。 3)漏斗核 结节垂体束—正中隆起的毛细血管将神经内分泌物质(促激素或 抑制激素),垂体前叶(腺垂体)。
结论:起消极作用的生活事件,不管情况严重与否,都会 使机体的免疫能力受到抑制。
4. 应激和神经内分泌系统的关系
在20世纪20年代末期,Scherrer发现硬骨鱼的下丘脑具 有内分泌细胞的特征,随后对多种动物的研究也得到了 相似的结果。
50年代,Harris和Green基于神经解剖、神经生理学的 研究成果,提出了“下丘脑可能分泌某些激素样物质, 参与并调控垂体激素的合成与分泌功能”的假设。
他的发现为情绪可以影响机体免疫功能的观点提供了 直接的实验证据。
1936 年 , Selye 分 析 了 一 系 列 伤 害 性 刺激对机体的影响,发现诸如缺氧、冷 冻、感染、失血、中毒和情绪紧张等均 可引起肾上腺皮质肥大,胸腺萎缩,外 周血中淋巴细胞减少等变化,他将这群 征候称为“应激”(stress),并确定 这些变化是由肾上腺皮质激素分泌过多 所致,由此证明了内分泌系统对免疫系 统的影响。
5. 神经免疫内分泌网络概念的形成和确立
1979年,Wybrain证明了人的T淋巴细胞上存在阿片肽受体,阿 片肽可以通过特异性受体调节淋巴细胞的功能,这直接证明了 神经系统与免疫系统存在功能联系。
进入八十年代后,由于技术方法的进步和新的学说和理 论的问世,对神经、内分泌和免疫系统三者之间的关系 的探讨进入一个新的阶段,神经免疫内分泌学渐趋成形。 围绕神经免疫内分泌系统间交互影响,还有众多名词术 语从不同的角度加以反映,如:
神经免疫学(neuroimmunology) 心理神经免疫学(psychoneuroimmunology) 行为免疫学(behavioral immunology) 免疫精神病学(immunopsychiatry) 神经免疫发生(neuroimmunogene-sis) 神经免疫调节(neuroimmunomodulation)
此概念的提出是当代生命科学研究的重大进展。
二、神经内分泌免疫系统的特性和共性
神经、免疫及内分泌三大系统广泛分布于体内,共同调节 机体其余各系统的活动,参与机体防御及生长和发育调控。 1. 三大系统与种系发生和个体发育 三大系统的种系进化可能是不同步的,神经系统的个体形 成似晚于免疫和内分泌系统。 三者之间在组织胚胎发生学上的相互依存、相互影响。
(2)信息储存和记忆:神经系统借助感官可存储和记忆 外界信息,免疫系统则在抗原识别等方面表现出记忆功 能。
(3)周期性变化:神经和内分泌系统的活动都具有周期 性变化,在免疫系统,在人类,T细胞、B细胞等均具 有周期性波动,即昼降夜升,并与血浆中皮质醇水平呈 反变趋势。
(4)正负反馈调节性机制:神经、免疫和内分泌系统各自内部 均存在正负反馈性调节机制,由此各系统的功能活动更趋协 调、准确而精细。在病理条件下,某些反馈机制可引起机体 较严重的损伤,如超敏反应等。
热金属片刺激皮肤为条件刺激,检测抗体滴度)
Robert Ader(罗伯特.爱德尔)的假设:经典条件反射作用可以 改变免疫应答 。成功地建立了条件性免疫抑制的动物模型。条件刺
激糖精水注射配对非条件刺激环注射免疫抑制药物磷酰胺,死亡率增加
他们的发现得到反复证实,从而开启了一个新的研究领域的大门— —心理神经免疫学(Psychoneuriommunology)
室旁核 下丘脑前核
结节区: 漏斗核 腹内侧核 背内侧核
室旁核
前核
视前内侧核和 视前外侧核
乳头体区: 乳头体核 下丘脑后核
视上核
下丘脑后核 下丘脑背内侧核 下丘脑腹内侧核
乳头体核 弓状核
下丘脑功能
①神经内分泌中心:下丘脑基底部的“促垂体区”能合成和分 泌至少九种具有活性的多肽,经垂体门脉系统运送至腺垂体, 调节腺垂体功能,构成了下丘脑-腺垂体功能系统 (hypothalamo-adenohypophysis system)。 ②皮质下自主神经活动高级中枢,对机体体温、摄食、生殖、 水盐平衡和内分泌活动等进行广泛的调节。 ③直接通过血液接受有关信息,如体温、血液成份的变化等。 ④下丘脑与边缘系统有密切联系,参与情绪行为的调节 ⑤调节机体昼夜节律的功能。
下丘脑-垂体门脉系统
视上核
主要是由下丘脑的神经元 产生激素,沿轴突送至垂体 视上垂体束 后叶(神经垂体)或送至正 中隆起,后者再通过其垂体 门 静 脉 hypophysial portal veins 送 至 垂 体 前 叶 ( 腺 垂 体)。
视旁核 视旁垂体束 漏斗核
此外,还可能有胺能、氨 基酸能或其它肽能神经至神 经垂体。
第六、七讲 神经-内分泌-免疫调节网络
赵春杰 东南大学医学院人体结构与神经科学学系
一、引 言
传统观点:机体的免疫系统和神经、内分泌系统是自 主行使功能的独立系统。
新的认识:免疫系统与神经和内分泌系统的联系十分 紧密,三个系统之间相互影响,共同组成神经内分泌 免疫网络。
1. 情绪与疾病关系
盖伦(Galen, 129~199) 的气质学说:四种气质类型 多血质(充满活力和动力) 胆汁质(容易激怒) 抑郁质(通常表现为忧郁和悲哀) 黏液质(人迟缓或者懒惰)。
Blalock提出了“神经免疫内分泌学”的概念,因为精 神心理活动是神经系统的主要高级功能,精神疾患的 发生有其深刻的神经内分泌基础,并且以上各个术语 的共同基础是神经、免疫及内分泌系统之间的交互作 用,即为“神经免疫内分泌网络” (neuroimmunoendocrine network, NET)。
70~80年代,相继从下丘脑组织中分离、纯化出了促甲 状腺激素释放激素(TRH)、促性腺激素释放激素(GnRH)、 生长激素释放激素(GHRH )、生长抑素(SS)和促肾上腺 皮质激素释放激素(CRH)等肽类激素。证实神经、内分 泌两个系统,在功能上实质上是一个相互依存的整体。
神经内分泌系统对应激的反应
(3)理化、生物及心理因素均可通过直接或间接的方式影响此 三大系统的功能状态,但它们的适宜刺激却明显不同,如角 膜刺激仅能直接作用于神经系统。
3.三大系统的某些共性
(1)信息分子和细胞表面标志:可共享信息分子及其受 体。大多神经肽、激素及免疫因子可分别在神经、免疫 及内分泌组织内合成或释放。神经、免疫和内分泌细胞 的标志分子也呈重叠分布。
神经-内分泌-免疫调节网络的概念
神经内分泌系统通过其广泛的外周神经突触及其分泌的神经 信息物质共同调控着免疫系统的功能; 免疫系统则通过免疫细胞产生的多种细胞因子和激素样物质 (免疫信息物质)反馈作用于神经内分泌系统; 神经内分泌系统和免疫系统的细胞表面都有相关受体接受对 方传来的各种信息。这种双向的复杂作用使两个系统内或系 统之间得以相互交通和调节,共同维持着机体的稳态。
Galen曾注意到: 忧郁的妇女较乐观的女生易罹患癌 症。
人的情绪变化:喜,怒、思、忧、悲,恐、惊
情绪变化与健康的关系:
中医的描述: 喜伤心 怒伤肝 忧(悲)伤肺 恐(惊)伤肾 思伤脾
统计学结果: 人类疾病有2/3 与心理刺激 生活境遇有关,其中心身疾 病占1/3.
2. 行为对免疫功能的影响
2.三大系统的分布、作用途径和范围
(1)三大系统在体内均系广泛分布,但神经系统有以突触为中 介的结构连续性,并可借其分支支配各种组织和器官,包括 内分泌组织和细胞。免疫组织亦如此,甚至小肠壁集合淋巴 小结也发现有神经末梢分布。所以,广义上讲,内分泌和免 疫系统可视为反射弧的传出环节。
(2)神经系统的信息传递主要由神经纤维上的动作电位及突触 来实现,而内分泌及免疫系统的信息传递多是由体液运输完 成的,后者还依赖于免疫细胞的循环而行使其细胞和体液免 疫功能,又称为“流动的脑”。
Vernon Riley的旋转应激实验:
实验方法:患乳腺癌的小白鼠被放在旋转台的顶部,以四 种速度进行旋转,每分钟转速分别为16、33、45或78, 这样就会使动物产生程度不同的旋转应激。
结果:每分钟转16转的小白鼠所患癌症的恶性程度比起每 分钟转 33 转的要小些,而每分钟转 33 转者其乳癌的恶 性程度比 45 转者又小些,每分钟 78 转的小白鼠肿瘤生 长得最快。
(5)与性别和衰老的关系:性别差异主要是遗传因素和内分泌 系统中的性腺轴系造成的,从而对神经系统和免疫系统产生 明显的影响。人及各种实验动物的免疫机能均有明显的性别 差异,包括体液免疫和细胞免疫的诸方面。如血浆中Ig水平、 细胞免疫的各种参数,对自身免疫性疾病、感染性疾病及肿 瘤发生的易感性等。
三、神经系统和内分泌系统间的相互作用
下丘脑(hypothalamus)至少分泌9种肽类激素,这些肽 类激素由下丘脑的神经细胞合成,通过下丘脑-垂体之间相 联接的垂体门脉系统的血流进入到垂体前叶,从而调节垂 体前叶激素的合成与分泌。