当前位置:文档之家› 东汽N-34000型凝汽器说明书

东汽N-34000型凝汽器说明书

版本号:A东 方 汽 轮 机 厂第全 册N-34000型凝汽器说明书M700-053000ASM编号 2003年02月编号M700-053000ASM编制校对审核会签审定批准目录序号章-节名称页数备注1 0-1 N-34000型凝汽器说明书160-1 N-34000型凝汽器说明书1概述凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。

1.1 特征1.1.1凝汽器是模块式双背压凝汽器,冷却水为海水。

1.1.2回热管系消除凝结水过冷和减小含氧量,提高机组循环热效率。

1.1.3水室为弧型结构,水力特性、受力特性好,为防腐,与海水接触的水室内表面采用了衬胶处理。

1.1.4冷却水管为钛管,端管板为钛复合板。

1.2 凝汽器的主要特性参数冷却面积:17000/17000m2冷却水设计进口温度:20℃冷却水设计压力:0.25MPa(g)冷却水设计流量:73652t/h设计背压: 4.9 kPa(a)(平均)[LP/HP 4.35/5.51 kPa(a)]冷却水介质:海水此外,装配好后无水时凝汽器重量约750t(含低加)。

凝汽器正常运行时的水重约450t,汽室中全部充满水时的水重约1550t。

2结构简介本凝汽器是系双壳体、单流程、双背压表面式凝汽器。

由两个斜喉部、两个壳体(包括热井、水室,回热管系),循环水连通管及底部的滑动、固定支座等组成的全焊结构(见图0-1-1及图0-1-2)。

本凝汽器采用了模块设计,在制造厂内组装成几个大块(见图0-1-3)及喉部内抽汽管组等零、部件,这样可以大大地减少电厂装焊量。

图0-1-1 图0-1-2接颈(4件)喉部(4件)壳体(4件)热井(4件)水室(8件)图0-1-32.1 喉部凝汽器喉部的四周由30mm厚的钢板焊成,内部采用一定数量的钢管及工字钢组成井架支撑,因此整个喉部的刚性较好。

2.1.1喉部上布置有组合式低压加热器、给水泵汽轮机的排汽接管、汽轮机旁路系统的减温减压器等。

2.1.2喉部内,在减温减压器的上方布置有水幕保护装置,以便在三级减温减压器喷水减温不正常,其排汽温度升高时,投入凝汽器水幕保护喷水,防止喉部温度过高,HP、LP凝汽器喉部内分别布置了20只喷嘴,其喷射压力1MPa,每一喉部内喷水量28.56 t/h。

当喉部温度高于80℃时,水幕保护装置动作并喷水。

2.1.3汽轮机的第五、六、七、八段抽汽管道以及轴封回汽、送汽管道从喉部顶部引入,第五、六段抽汽管分别通过喉部壳壁引出,第七、八段抽汽管接入布置在喉部内的组合式低压加热器。

2.1.4抽汽管的保温设计,应用气体隔热原理,采用不锈钢保温罩,从而避免了采用一般保温材料作保温层时,由于保温材料的剥落而影响凝结水水质的缺陷。

2.1.5抽空气系统为并联,LP、HP侧喉部各有两根管子引出,这样有利于凝汽器的半侧清洗和运行。

2.2 壳体和水室壳体分为低压侧壳体(LP壳体)和高压侧壳体(HP壳体),每个壳体四周都由20~25mm厚的钢板拼焊而成,内有支撑杆等加强件,具有良好的刚性。

每个壳体内有四组管束(管束为三角形排列),冷却水管为耐海水腐蚀的钛管。

在每组管束下部均设有空冷区,其空气抽出管由汽侧空间引出,空冷区管束的管子和主凝结区外部的两排管子采用φ25×0.7的钛管,主凝结区管束采用φ25×0.5的钛管,端管板为复合钛板。

冷却管的两端采用胀接+焊接的方式固定在端管板上,端管板与壳体采用焊接形式构成一整体,中间管板通过支撑杆与壳体侧板及底板相焊。

在壳体内还设置了一些集水板和挡汽板,靠近两端管板处,还设置有取样水槽,以便检测冷却管与管板之间的密封性。

壳体下部为热井,凝结水出口设置在低压侧壳体热井底部,凝结水管出口处设置了滤网和消涡装置。

前后水室均为由钢板卷制成的弧形结构。

水室内表面整体衬天然橡胶,衬胶厚度为5mm,并整体硫化。

本凝汽器采用循环冷却水双进双出形式,其中前水室分为四个独立腔室,LP侧两个前水室为进水室,HP侧两个前水室为出水室,后水室为四个独立腔室,与循环水连通管相连,为转向水室,前后水室与端管板均采用法兰连接。

在喉部、壳体下部、水室上均设有人孔,以便对凝汽器进行检修、维护。

水室上还开有通风孔、放气孔等。

本凝汽器配置有一套水位计,运行时,可对凝汽器热井水位进行就地及远传显示监测。

现场安装时,在凝汽器HP侧壳体上由用户确定实际位置,其标高指示必须满足图样上的要求。

2.3 凝结水回热系统大功率机组双背压凝汽器大都采用凝结水回热装置,以消除凝结水过冷和减小含氧量,提高机组循环热效率。

在该凝汽器的LP侧壳体内,设有集水板,从集水板向下引出两根凝结水回热主管,通过LP侧热井引向HP侧热井并与HP侧热井中的回热管系相接。

HP、LP侧热井之间接有凝结水连通管,回热主管从其中穿过,高压侧设有双层淋水盘(见图0-1-4)。

2.4 连接和支承方式凝汽器与汽轮机排汽口采用不锈钢膨胀节挠性连接,凝汽器下部为刚性支承,运行时凝汽器垂直方向的热膨胀由喉部上面的波形膨胀节补偿。

在每个壳体的底部设有一个固定支座、四个滑动支座,滑动支座采用从德国进口的多球支座(图0-1-6),在凝汽器壳体底部中间处采用固定支承,其位置与汽轮机低压缸死点一致(图0-1-5)。

图四图0-1-5图0-1-6 多球支座2.5 循环水连通管整台凝汽器有两根循环水连通管,用以连通LP、HP 侧的后水室。

布置在壳体的下面(见图0-1-1、0-1-2及0-1-7)。

嘉兴工程的冷却水是海水,所以对循环水连通管表面防腐有严格的要求。

循环水管内部尖角处均应打磨光滑,其过渡半径不小于5mm。

循环水管卷制的纵向拼焊焊缝应错开,内部焊缝应圆滑过渡,其最小半径不小于5mm。

连通管内表面(含人孔盖板及法兰盖板内表面)应采取喷铝+重防腐涂层+电化学保护的防腐措施,并且在现场装焊完成后应补涂防腐层。

3工作过程正常工作时,冷却水由LP侧的两个前水室进入,经过凝汽器LP侧壳体,流到后水室,经循环水连通管水平转向后,通过凝汽器HP侧壳体流至HP侧的前水室并排出凝汽器。

蒸汽由汽轮机排汽口进入凝汽器,然后均匀地分布到管子全长上,经过管束中央通道及两侧通道使蒸汽能够全面地进入主管束区,通过冷却水管的管壁与冷却水进行热交换后被凝结;部分蒸汽由中间通道和两侧通道进入热井对凝结水进行回热。

剩余的汽气混合物经空冷区再次进行热交换后,少量未凝结的蒸汽和空气混合物经抽气口由抽真空设备抽出。

凝结水汇集在热井内,由凝结水泵抽出,升压后输入主凝结水系统(冷却水流向见图0-1-7)。

图0-1-74安装由于凝汽器尺寸较大,受到运输条件的限制,不能整体运输,因此,在制造厂内制成模块,运到现场进行组装。

凝汽器组装时,按制造厂提供的图样和安装指导书进行。

为了保证机组有良好的密封性,组装时必须保证所有焊缝的焊接质量,内外相通的焊缝须作煤油渗透检查,并在真空系统中采用真空阀。

安装各种不同用途的管道时,应装设必要的缓冲板,开孔时若与凝汽器内部加强肋板或支撑杆相碰,应尽量保留原有的加强肋板或支撑杆。

凝汽器的开孔应按制造厂《凝汽器开孔及附件图》进行。

在装配冷却管时,应确认冷却管为合格产品。

冷却管的装配应符合凝汽器总图(M700-053000A)的要求。

如发现冷却管严重划伤、变形,应更换新管。

如果钛管尺寸不够长时,应更换足够尺寸的钛管,禁止用加热或其它强力方法伸长钛管。

胀接时不得使用任何润滑剂,以保证辘管质量及其密封性。

凝汽器的滑动支座在运输中用角钢固定,安装结束后需去掉角钢。

凝汽器的滑动支座采用德国进口的多球支座,该多球支座上带有对中螺钉,在厂内装焊、运输及现场安装中必须拧紧所有的对中螺钉,现场安装完毕及作完灌水试验后,必须将多球支座上自带的对中螺钉拧松,以保证滑动支座正常工作。

凝汽器的循环水连通管在制造厂内已经作了防腐处理,分为几段,到现场拼焊后,须对拼焊焊缝打磨处理,然后进行防腐处理。

在大修时,仅需更换阳极块及修补破损的防腐层。

水位计、平衡容器的连接和安装要求见水位计说明书(M786-027000ASM)。

5凝汽器的试验为了确保机组的运行性能,凝汽器在正式投入运行前,其水侧必须进行水压试验、汽侧进行灌水试验及真空系统进行严密性试验。

5.1 水侧的水压试验本凝汽器水压试验压力为0.375MPa(g),用于水压试验的水温应不低于15℃,试验步骤如下:5.1.1关闭所有与水室连接的阀门。

5.1.2灌清洁水并加压至0.375MPa(g)(水室底部)。

5.1.3维护此压力30分钟在试验过程中必须注意水室法兰、人孔及各连接焊缝等处有无漏水、渗水及整个水室有无变形等情况发生。

发现问题应立即停止试验,并采取补救措施。

若在规定时间内不能做完全部检查工作,则应延长持压时间。

5.2 汽侧的灌水试验为了检验壳体及冷却管的安装情况,灌水试验在凝汽器运行前是不可少的,但不能与水侧水压试验同时进行。

灌水试验水温应不低于15℃。

汽轮机检修后再次启动前也要做灌水试验。

试验前:凝汽器底部不需另设临时支撑,但为了保护凝汽器的多球支座,每个滑动支座用了2个垫板(见详图M700-053151A),该垫板在现场凝汽器安装就位后按实际间隙配做,保证实际间隙在0.2~0.3 mm之间,并与支座同时打印标记,然后将其装配就位。

试验时,步骤如下:5.2.1关闭所有与壳体连接的阀门。

5.2.2灌入清洁水,灌水高度应高于凝汽器与低压缸连接处约300mm。

5.2.3维持此高度24小时。

在试验过程中如发现冷却管及与端管板连接处、壳体各连接焊缝等处有漏水、渗水及整个壳体外壁变形等情况应立即停止试验,放尽清洁水进行检查,发现问题的原因并采取处理措施。

试验后:首先放掉壳体内的水,并吹干,然后抽去每个滑动支座上的两块垫板,并与支座一起进行防锈和防腐处理,垫板应妥善保存,以备下次大修后做灌水试验用,待全部检查正常后,松开每个多球支座上的自带对中螺钉,以保证滑动支座正常工作。

5.3 真空系统的气密性试验为了检测机组的安装水平,保证整个真空系统的严密性,应进行真空系统严密性试验。

检测方法是停主抽气器或关闭抽气设备入口电动门(要求该电动门不得有泄漏)。

测量真空度下降的速度,试验时必须遵照本机组《汽轮机启动、运行说明》有关气密性试验的规定、要求。

试验步骤如下:5.3.1停主抽气器或关闭抽气设备入口电动门,注意凝汽器真空应缓慢下降(试验时负荷为80%~100%额定负荷)。

5.3.2每分钟记录真空读数一次。

5.3.3第五分钟后开启抽气设备入口电动门。

5.3.4真空下降速度取第三分钟至第五分钟的平均值。

5.3.5记录当时的负荷及真空下降的平均值。

相关主题