中考数学重难点专题讲座第三讲 动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,第一部分 真题精讲【例1】(2010,密云,一模)如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB 时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.ABMCNED∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NCEC CD=. (这个比例关系就是将静态与动态联系起来的关键) ∴1021035t t -=-.解得5017t =.【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质) ∵4sin 5DF C CD ∠==, ∴3cos 5C ∠=, ∴310225tt -=⨯, 解得258t =.A BMCNFD② 当MN MC =时,如图③,过M 作MH CD ⊥于H . 则2CN CH =,∴()321025t t =-⨯.∴6017t =. AB MCN HD③ 当MC CN =时, 则102t t -=.103t =. 综上所述,当258t =、6017或103时,MNC △为等腰三角形. 【例2】(2010,崇文,一模)在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。
由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
【解析】:(1)结论:CF 与BD 位置关系是垂直;证明如下: AB=AC ,∠ACB=45º,∴∠ABC=45º. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。
(2)CF ⊥BD .(1)中结论成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。
分类讨论之后利用相似三角形的比例关系即可求出CP.(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-, 24x CP x ∴=-+.②点D 在线段BC 延长线上运动时,GABCDE F∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作AC AG ⊥交CB 延长线于点G , 则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =+, 24x CP x ∴=+.【例3】(2010,怀柔,一模)已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。
第二问和例1一样是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的。
题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】(1)证明:∵MBC △是等边三角形 ∴60MB MC MBC MCB ===︒,∠∠ ∵M 是AD 中点ADCBP MQ60°∴AM MD = ∵AD BC ∥∴60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠∴AMB DMC △≌△ ∴AB DC =∴梯形ABCD 是等腰梯形.(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠∴120BMP BPM BPM QPC +=+=︒∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩)∴BMP QPC =∠∠ ∴BMP CQP △∽△ ∴PC CQBM BP=∵PC x MQ y ==, ∴44BP x QC y =-=-, ∴444x y x -=- ∴2144y x x =-+ (设元以后得出比例关系,轻松化成二次函数的样子) 【思路分析2】第三问的条件又回归了当动点静止时的问题。
由第二问所得的二次函数,很轻易就可以求出当X 取对称轴的值时Y 有最小值。
接下来就变成了“给定PC=2,求△PQC 形状”的问题了。
由已知的BC=4,自然看出P 是中点,于是问题轻松求解。
(3)解: PQC △为直角三角形 ∵()21234y x =-+ ∴当y 取最小值时,2x PC ==∴P 是BC 的中点,MP BC ⊥,而60MPQ =︒∠, ∴30CPQ =︒∠, ∴90PQC =︒∠以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。
如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。
当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题. 【例4】2010,门头沟,一模已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。
从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。
第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。
第二问将△BEF 旋转45°之后,很多考生就想不到思路了。
事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。
连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。
于是两个全等的三角形出现了。
(1)CG EG =(2)(1)中结论没有发生变化,即CG EG =.证明:连接AG ,过G 点作MN AD ⊥于M ,与EF 的延长线交于N 点. 在DAG ∆与DCG ∆中,∵AD CD ADG CDG DG DG =∠=∠=,,,∴DAG DCG ∆∆≌. ∴AG CG =. 在DMG ∆与FNG ∆中,∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴DMG FNG ∆∆≌. ∴MG NG =在矩形AENM 中,AM EN = 在Rt AMG ∆与Rt ENG ∆中, ∵AM EN MG NG ==,, ∴AMG ENG ∆∆≌. ∴AG EG =. ∴EG CG =M N图2ABCDEFG【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。