当前位置:文档之家› 材料力学梁弯曲时的位移

材料力学梁弯曲时的位移


第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原
来位置的角位移q 称为横截面的转角(angle of rotation)。
最大挠度在跨中,其值为
2 3 4 3 ql 2 l l 5ql wm ax w | x l 2 l 2l 24 EI 2 2 384 EI
24
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
b x 2 F x a EIw2 F C2 l 2 2
2
b x 3 F x a EIw2 F C2 x l 6 6 D2
3
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
值得注意的是,在对右段梁进行积分运算时,对于含
有(x-a)的项没有以x 为自变量而是以(x-a)作为自变量进行
第五章 梁弯曲时的位移
当全梁各横截面上的弯矩
可用一个弯矩方程表示时(例如
图中所示情况)有
EIw M x d x C1
EIw M x d x d x C1 x C2


以上两式中的积分常数C1, C2由边界条件确定后即可得出梁
的转角方程和挠曲线方程。
挠曲线近似微分方程
b EIw1 M 1 x F x l 积分得
b x2 EIw1 F C1 l 2 b x EIw1 F C1 x D1 l 6
27
3
Hale Waihona Puke b EIw2 M 2 x F x F x a l
18
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
事实上,当以x为自变量时
EIw M x d x C1 EIw [ [ M x d x] d x C1 x C2
两式中的积分在坐标原点处(即x=0处)总是等于零,从而有
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
第五章 梁弯曲时的位移
该梁的两类边界条件为 连续条件:
在x=a处 w1 w2,w1=w2
支座约束条件:在x=0处 w1=0,在 x=l 处 w2=0 由两个连续条件得:
C1 C2, D1 D2
由支座约束条件 w1|x=0=0 得
D1 0
29
从而也有
D2 0
材 料 力 学 Ⅰ 电 子 教 案
EIw M x F l x
以x为自变量进行积分得 x2 EIw F lx C1 2
lx 2 x 3 EIw F 2 6 C1 x C2
该梁的边界条件为:在 x=0 处 w 0,w =0
第五章 梁弯曲时的位移
由另一支座约束条件 w2|x=l=0 有
b l EIw2 | x l F l b
3
l a 3 C l 0 F

材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
由此题可见,当以x为自变量对挠曲线近似微分方程
进行积分时,所得转角方程和挠曲线方程中的积分常数
是有其几何意义的:
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
此例题所示的悬臂梁,q0=0,w0=0, 因而也有C1=0 ,C2=0。
9
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
Ⅱ. 挠曲线近似微分方程的积分及边界条件
M x w EI
求等直梁的挠曲线方程时可将上式改写为
EIw M x
后进行积分,再利用边界条件(boundary condition)确定积分
常数。
10
材 料 力 学 Ⅰ 电 子 教 案
积分的,因为这样可在运用连续条件 w1 '|x=a=w2'|x=a 及 w1|x=a=w2|x=a 确定积分常数时含有(x-a)2和(x-a)3的项为零而 使工作量减少。又,在对左段梁进行积分运算时仍以x 为 自变量进行,故仍有C1=EIq0,D1=EIw0。
28
材 料 力 学 Ⅰ 电 子 教 案
11
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
边界条件(这里也就是支座处的约束条件)的示例如 下图所示。
12
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
若由于梁上的荷载不连续等原因使得梁的弯矩方程
需分段写出时,各段梁的挠曲线近似微分方程也就不同。
而对各段梁的近似微分方程积分时,都将出现两个积分 常数。要确定这些积分常数,除利用支座处的约束条件 (constraint condition)外,还需利用相邻两段梁在交界处 的连续条件(continuity condition)。这两类条件统称为边
界条件。
13
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
14
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x F l x
挠曲线近似微分方程为
16
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
可见该梁的qmax和wmax均在x=l的自由端处。于是有
q max
wmax
17
Fl 2 Fl 2 Fl 2 q | x l EI 2 EI 2 EI Fl 3 Fl 3 Fl 3 w | x l 2 EI 6 EI 3EI
的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
1 M x x x EI
注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同
在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主 要承受剪力的腹板则由价廉但切变模量较小的复合材料制 作,此时剪切变形对梁的变形的影响是不可忽略的。
21
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x ql 1 q x qx2 lx x 2 2 2 2


挠曲线近似微分方程为
EIw M x q lx x 2 2

以x为自变量进行积分得:
q lx 2 x 3 EIw 2 3 C1 2 q lx3 x 4 EIw 6 12 C1 x C2 2
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角 §5-2 梁的挠曲线近似微分方程及其积分 §5-3 按叠加原理计算梁的挠度和转角
*§5-4
梁挠曲线的初参数方程
§5-5 梁的刚度校核· 提高梁的刚度的措施
§5-6 梁内的弯曲应变能
1
材 料 力 学 Ⅰ 电 子 教 案
19
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
思考: 试求图示等截面悬臂梁在所示坐标系中的挠曲线
方程和转角方程。积分常数C1和C2等于零吗?
20
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-2 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
7
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作
1 w x 1 w 2


3/ 2
式中,等号右边有正负号是因为曲率1/为度量平面曲线 (挠曲线)弯曲变形程度的非负值的量,而w"是q = w' 沿x方 向的变化率,是有正负的。
22
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
该梁的边界条件为 在 x=0 处 w=0,
在 x=l 处 w=0
q l4 l4 C2 0 及 EIw | x l C1l 0 2 6 12
于是有

从而有 转角方程
ql 3 C1 ,C2 0 24
例题5-3 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
25
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:约束力为
b a FA F , FB F l l
两段梁的弯矩方程分别为
b M 1 x FA x F x 0 x a l b M 2 x FA x F x a F x F x a a x l l
2
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
弯曲后梁的轴线——挠曲线(deflection curve)为一平 坦而光滑的曲线,它可以表达为w=f(x),此式称为挠曲线 方程。由于梁变形后的横截面仍与挠曲线保持垂直,故 横截面的转角q 也就是挠曲线在该相应点的切线与x轴之
间的夹角,从而有转角方程:
下中性层的曲率为
M EI 1
这也就是位于中性层内的挠曲线的曲率的表达式。
6
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产
相关主题