硕士学位论文(本论文得到国家自然科学基金 (21207099, 21273162)) 和上海市科技发展基金(11nm0501000, 12ZR1451100)资助)微孔-介孔结构多孔碳纳米微粒的可控制备及其电化学性能研究 姓 名:徐意学 号:1132216所在院系:化学系 学科门类:理学学科专业:物理化学指导教师:甘礼华 教授二〇一四年五月A dissertation submitted to Tongji University in conformity with the requirements for the degree of Master of Science (Supported by National Natural Science Foundation of China (21207099, 21273162), the Science and Technology Commission of Shanghai Municipality, China (11nm0501000, 12ZR1451100)May, 2014 Candidate:Xu Yi Student Number: 1132216 School/Department: Department of Chemistry Discipline: Science Major: Physical Chemistry Supervisor: Prof. Gan Lihua Controllable synthesis and electrochemical properties of micro- and mesoporous structure porous carbon nanoparticles学位论文版权使用授权书本人完全了解同济大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。
学位论文作者签名:年月日同济大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下,进行研究工作所取得的成果。
除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人创作的、已公开发表或者没有公开发表的作品的内容。
对本论文所涉及的研究工作做出贡献的其它个人和集体,均已在文中以明确方式标明。
本学位论文原创性声明的法律责任由本人承担。
学位论文作者签名:年月日同济大学硕士学位论文摘要摘要超级电容器作为介于传统电容器与电池之间的一种新型储能器件,具有两者功率密度高、循环寿命长、充放电速度快等优点,可以应用于电动汽车、太阳能系统、消费类电子电源等领域,受到了国内外研究者们的重点关注。
电极材料是影响超级电容器电化学性能的重要因素,因此,寻求高性能的电极材料是目前的研究热点之一。
多孔碳纳米材料有着大的比表面积,较好的孔结构以及简单的制备过程,将其作为超级电容器电极材料的研究引起了人们的广泛关注。
本论文结合水热法和模板法制备新型微孔-介孔结构多孔碳纳米微粒,优化实验条件,使用SEM、XRD、N2吸脱附分析等表征手段对其微观形貌进行分析,并对其电化学性能进行系统的研究。
主要研究内容和取得的结果如下:(1)使用多羟基酚类化合物为主要前驱物合成的微孔低聚物作为“种子”,通过添加三嵌段共聚物F127在微孔低聚物中创建介孔,制备具有微孔-介孔结构的多孔碳纳米微粒,考察三嵌段共聚物F127对微孔-介孔结构多孔碳形貌和性能的影响;将微孔-介孔结构多孔碳制成电极,对其电化学性能进行研究。
结果表明得到的多孔碳纳米微粒的粒径在50-100 nm之间,比表面积在236-777m2g-1之间,孔体积在0.19-0.54 c m3 g-1之间,其中微孔体积在0.10-0.35 cm3 g-1之间,介孔体积在0.09-0.19 cm3 g-1之间,同时最可几孔径分布为2.1-4.2 nm,表明所得的MMPC-X-60系列样品是具有明显微孔-介孔结构的多孔碳纳米微粒。
MMPC-X-60系列样品电极在扫速为100 mV s-1下时均显示出良好的矩形性,在电流密度为 1 A g-1时的恒流充放电曲线均有着良好对称性。
典型样品MMPC-4-60有着高达777m2 g-1的比表面积,在100 mV s-1大扫速下,循环伏安曲线仍然有着一定的矩形性,说明了它有着较好的双电层性能。
同时,MMPC-4-60电极在0.5 A g-1电流密度下的比电容达168 F g-1,在10 A g-1的大电流密度下的比电容为110 F/g,电容保持率为65 %。
MMPC-4-60样品的等效串联电阻最小,只有0.31 Ω。
这也印证了在相同电流密度下,由MMPC-4-60样品制成的电极在相同电流密度下的比电容相对较大。
通过引入三嵌段共聚物F127来创建介孔,构筑微孔-介孔结构,并结合水热法制备微孔-介孔结构多孔纳米微粒的方法既简单又绿色环保,有着广泛的应用前景。
(2)在制备微孔-介孔结构多孔碳纳米微粒的基础上,通过调节预聚时间来控制最终产物的形貌。
改变预聚时间从60 min到30 min、15 min,分别制备得同济大学硕士学位论文摘要到MMPC-4-Y和MMPC-6-Y系列样品,其比表面积为277-777 m2 g-1,孔体积为0.20-0.54 cm3 g-1,微孔体积在0.07-0.35 cm3 g-1之间,介孔体积0.02-0.26 cm3 g-1之间,孔径分布主要集中在2.7-4.3 nm之间,表明此系列样品都是微孔-介孔结构的多孔碳纳米微粒。
同时,随着预聚时间的减小,MMPC-4-Y系列样品的比表面积逐渐降低,而MMPC-6-Y系列样品的比表面积先增大后减小,样品的孔径分布也随之发生变化,说明了预聚时间对多孔碳纳米颗粒的形貌有着重要的影响。
其中,典型样品MMPC-6-30的比表面积为444 m2 g-1,平均孔径为3.5 nm,将其制备成超级电容器电极材料,进行电化学性能测试。
在扫描速率从10 mV s-1增大到500 mV s-1时,其循环伏安曲线一直保持着良好的矩形性,展现出了良好的电化学性能;同时,在电流密度为0.5 A g-1时比电容高达220 F g-1,当电流密度增大至50 A g-1时其恒流充放电曲线也没有明显的电压降出现,比电容仍有95 F g-1。
在1 A g-1电流密度下,MMPC-6-30电极经过1000圈恒流充放电循环后,从第一次的197 F g-1仅仅下降至196 F g-1,比电容保持率高达99.5 %,而且其内电阻只有0.23 Ω,表明改变预聚时间后合成的典型样品MMPC-6-30有着非常出色的电化学性能,既有大的比电容,又有非常稳定的循环寿命,是非常有潜力的超级电容器电极材料。
(3)采用KOH为活化剂,探索活化条件对微孔-介孔结构多孔碳纳米微粒微观结构的影响,对其电化学性能进行研究。
结果表明,制备得到的AMMPC-1、AMMPC-2、AMMPC-3和AMMPC-4系列样品的表面积在667-1135 m2 g-1,总孔体积是0.50-1.00 cm3 g-1,微孔体积为0.26-0.36 cm3 g-1,介孔体积为0.24-0.64 cm3 g-1,最可几孔径分布为3.0-3.9 nm,因此,AMMPC-Z系列样品都有着微孔-介孔结构。
确定了最适宜的KOH与多孔碳纳米微粒的质量比为 1 : 1。
典型样品AMMPC-1的比表面积为805 m2 g-1,平均孔径为3.9 nm,将其制成超级电容器电极材料,当扫描速率从10 mV s-1增大到500 mV s-1时,其循环伏安曲线一直保持着很好的矩形性,显示出了优秀的电化学性能;该样品在电流密度为0.5 A g-1时比电容高达283 F g-1,当电流密度增大至50 A g-1时其恒流充放电曲线中也没有出现明显的电压降,而其比电容仍有173 F g-1。
在1 A g-1电流密度下,AMMPC-1电极经过1000圈恒流充放电循环后,其比电容从第一次的256 F g-1下降至250 F g-1,电容保持率高达97.7 %,该样品表现出极其稳定的电化学性能,同时其内电阻只有0.23 Ω。
在相同条件下,活化前电极的比电容仅197 F g-1,活化后电极的比电容提高了30 %。
研究结果表明AMMPC-1典型样品有着非常出色的电化学性能。
通过简单的活化过程构筑了更加合理的微介孔分布结同济大学硕士学位论文摘要构,可以大幅提高电化学性能,这在大功率超级电容器电极材料研究中有着广泛的应用潜力。
关键词:超级电容器,碳材料,三嵌段共聚物,微孔-介孔,电化学性能,化学活化Tongji University Master of Philosophy AbstractABSTRACTSupercapacitor is a new type of energy storage device between traditional capacitors and batteries with high power density, long cycle life, fast charge and discharge performance and can be used in electric vehicles, solar systems, consumer electronics, power supply and other fields. Recently, supercapacitor has been the focus of attention of domestic and foreign researchers. Electrode materials is an important factor affecting the electrochemical performance of supercapacitors, so it is one of the hottest topics in current research. Because of porous carbon nano material has a large specific surface area, good pore structure and simple preparation process, porous carbon as supercapacitor electrode material have been attracted considerable attention.The study of this thesis combines the hydrothermal method and template method to synthesis novel micro - mesoporous structure porous carbon nanoparticles. The research is focused on optimizing the experimental conditions, analyzing its microstructure by using SEM, XRD, N2 adsorption-desorption analysis and studying their electrochemical properties systematically. The main researches and results as follows.(1) Using hydroxyl phenolic compounds as the main precursors to synthesis of microporous oligomer which is called "seed",and adding three block copolymer F127 to create mesoporous in microporous oligomer to prepare microporous and mesoporous structure porous carbon nanoparticles, then researching the influence of three block copolymer F127 in the morphology of porous carbon materials. The resultant MMPC-X-60 have specific areas of 236-777m2g-1, total pore volumes of 0.19-0.54c m3 g-1, micropore volumes of 0.10-0.35 cm3g-1, mesoporous volume of 0.09-0.19 cm3g-1, average pore diameter is 2.1-4.2 nm and these results show that MMPC-X-60 series samples all have microporous-mesoporous structures. Electrochemical performance studies reveal that the cyclic voltammogra curves of MMPC-X-60 electrode materials at a scan rate of 100 mV s-1were good, and constant-current charging-discharging curves symmetry of MMPC-X-60 electrode materials at the constant current densities of 1 A g-1 were symmetrical. The specificTongji University Master of Philosophy Abstractarea of typical sample MMPC-4-60 is 777 m2g-1, the CV curve of MMPC-4-60 presents a good quasi-rectangular voltammogram shape at a scan rate of 100 mV s-1, so it has a good performance of electric double layer capacitor characteristics. At the same time, the specific capacitance of MMPC-4-60 are 168 F g-1and 110 F g-1at current density of 0.5 A g-1 and 10 A g-1 respectively, retention of 65 %. Besides, the internal resistant of MMPC-4-60 is about 0.31 Ω and it is the lowest in the Nyquist plots of MMPC-X-60. This is also confirmed at the same current density, the specific capacitancethe of MMPC-4-60 electrode is larger than the other samples at the same current density. This method of adding F127 to create microporous - mesoporous structure and combining with hydrothermal method for fabrication of micro - mesoporous structure porous nanoparticles is simple and green environmental protection, which has broad application prospects.(2) Based on preparation of microporous - mesoporous structure porous carbon nanoparticles, by adjusting the prepolymerization time to change the precursor "seeds" to control the morphology of the final product. Preparation MMPC-X-30 and MMPC-X-15 series samples by changing the the prepolymerization time from 60 min to 30 min, 15 min. The resultants have specific areas of 277-1136 m2 g-1, total pore volumes of 0.20-1.12 cm3 g-1, micropore volumes of 0.07-0.44 cm3 g-1, mesoporous volume of 0.02-0.84 cm3g-1, average pore diameter is 2.7-6.6 nm and these results show that they all have microporous-mesoporous structures. The specific areas of typical sample MMPC-6-30 is 444 m2g-1and its average pore diameter is 3.5 nm. Electrochemical performance studies reveal that the cyclic voltammogram curves of MMPC-6-30 presents a very good rectangular voltammogram shape at a scan of 10 mV s-1, even at a high scan rate of 500 mV s-1, it indicates that MMPC-6-30 has good electric double-layer capacitor characteristics. Besides, the specific capacitance of MMPC-6-30 is 220 F g-1at a current density of 0.5 A g-1, even at a high current density of 50 A g-1, it still possess specific capacitance of 95 F g-1 and there was no observation of obvious voltage drop at the current switches. The MMPC-6-30 electrode exhibits specific capacitance of 197 F g-1 at a current density of 1 A g-1, and it remains 99.5 % after 1000 times of charge-discharge cycles, and the the internal resistant of MMPC-6-30 is 0.23 Ω. It shows that the the typical sample MMPC-6-30 which is synthesized by changing prepolymerization time has a very goodTongji University Master of Philosophy Abstractelectrochemical performance: not only has high specific capacitance, but also has good stable cycle life, so it is very promising in supercapacitor electrode material.(3) By using hydroxyl phenolic compounds as the main precursors to synthesis of microporous oligomer which is called "seed", and adding three block copolymer F127 to create mesoporous in microporous oligomer to prepare microporous and mesoporous structure porous carbon nanoparticles by carbonization at 850 ℃. Using KOH as activating agent to explore the influence of activation conditions on the morphology of Microporous and mesoporous structure porous carbon nanoparticles. The results show that, the AMMPC-Z series sample have specific areas of 667-1135 m2 g-1, total pore volumes of 0.50-1.00 cm3 g-1, micropore volumes of 0.26-0.36 cm3 g-1, mesoporous volume of 0.24-0.64 cm3 g-1, average pore diameter is 3.0-3.9 nm and these results show that they all have microporous-mesoporous structures. Determining the mass ratio of 1:1 between KOH and inactivated MMPC-6-30 is the optimal activation condition. The specific areas of typical sample AMMPC-1 is 805 m2/g and its average pore diameter is 3.9 nm. Electrochemical performance studies show that the cyclic voltammogra mcurves of AMMPC-1 presents a very good rectangular voltammogram shape at a scan of 10 mV s-1, even at a high scan rate of 500 mV s-1, it indicates that AMMPC-1 has very good electric double-layer capacitor characteristics. At the same time, the specific capacitance of AMMPC-1 is 283 F g-1at a current density of 0.5 A g-1, and at a high current density of 50 A g-1, it still possess specific capacitance of 173 F g-1 and there was no obvious voltage drop at the current switches. The AMMPC-1 electrode exhibits specific capacitance of 256 F g-1at a current density of 1 A g-1, and it remains 250 F g-1 after 1000 times of charge-discharge cycles, the retention is 97.7 %. And the the internal resistant of MMPC-6-30 is about only 0.23 Ω. This indicates that the typical sample AMMPC-1 has excellent electrochemical performance. Simple activation process greatly increased electrochemical properties of materials and this method has a broad application prospects in high-power supercapacitor electrode material.Key Words: Supercapacitors, carbon materials, the triblock copolymer, microporous - mesoporous structure, electrochemical properties, chemical activation同济大学硕士学位论文目录目录摘要 (I)ABSTRACT ........................................................... I V 目录.............................................................. V II 第1章绪论 (1)1.1概述 (1)1.2超级电容器 (2)1.2.1 超级电容器分类 (2)1.2.1.1 双电层电容器 (2)1.2.1.2 法拉第赝电容电容器 (3)1.2.1.3 混合型超级电容器 (3)1.2.2 超级电容器电极材料 (4)1.2.2.1 碳基材料 (4)1.2.2.2 金属氧化物材料 (9)1.2.2.3 导电聚合物材料 (9)1.3层次孔结构多孔材料 (11)1.3.1 概述 (11)1.3.2 层次孔结构多孔材料种类 (12)1.3.2.1 沸石分子筛 (12)1.3.2.2 多孔有机骨架材料 (13)1.3.2.3 多孔碳材料 (14)1.4研究目标与内容 (16)1.4.1 研究目标 (16)1.4.2 研究内容 (17)第2章实验仪器及表征方法 (18)2.1实验原料及化学试剂 (18)2.2材料表征方法 (19)2.2.1 扫描电子显微镜(SEM) (19)2.2.2 比表面积及孔径分布测试 (19)2.2.3 X-射线衍射分析(XRD) (19)2.3电化学性能研究方法 (19)2.3.1电极材料的制备 (20)2.3.2 电化学性能测试 (20)同济大学硕士学位论文微孔-介孔结构多孔碳纳米微粒的可控制备及其电化学性能研究2.3.2.1 循环伏安测试(CV) (20)2.3.2.2 恒流充放电特性测试(GC) (20)2.3.2.3 交流阻抗谱测试(EIS) (21)2.3.2.4 电化学循环稳定性能测试 (21)2.4本章小结 (21)第3章微孔-介孔结构碳纳米微粒的制备及其电化学性能 (22)3.1实验部分 (23)3.1.1 微孔-介孔结构多孔碳纳米微粒的制备 (23)3.1.2 样品表征 (23)3.1.3 电化学性能测试 (24)3.2结果与讨论 (24)3.2.1微观形貌分析 (24)3.2.2 XRD分析 (25)3.2.3 BET分析 (26)3.2.4 电化学性能分析 (28)3.2.4.1 循环伏安特性 (28)3.2.4.2 恒流充放电特性 (30)3.2.4.2 交流阻抗特性 (31)3.3本章小结 (32)第4章预聚时间对微孔-介孔碳纳米微粒的影响研究 (34)4.1实验部分 (34)4.1.1 不同预聚时间的样品的制备 (34)4.1.2 样品表征 (35)4.1.3 电化学性能测试 (35)4.2结果与讨论 (36)4.2.1微观形貌分析 (36)4.2.2 XRD分析 (37)4.2.3 BET分析 (37)4.2.4电化学性能分析 (39)4.2.4.1 循环伏安特性 (39)4.2.4.2 恒流充放电特性 (40)4.2.4.3 交流阻抗特性 (41)4.2.4.4 典型样品的电化学性能 (42)4.2.4.5 电化学循环稳定性 (43)4.3本章小结 (44)第5章微孔-介孔结构多孔碳纳米微粒的化学活化 (45)同济大学硕士学位论文目录5.1实验部分 (45)5.1.1微孔-介孔结构多孔碳纳米微粒的活化 (45)5.1.2 样品表征 (46)5.1.3 电化学性能测试 (46)5.2结果与讨论 (46)5.2.1微观形貌分析 (46)5.2.2 XRD分析 (47)5.2.3 BET分析 (48)5.2.4电化学性能分析 (50)5.2.4.1 循环伏安特性 (50)5.2.4.2 恒流充放电特性 (51)5.2.4.3 交流阻抗特性 (53)5.2.4.4 电化学循环稳定性 (54)5.3本章小结 (55)第6章结论与展望 (56)致谢 (58)参考文献 (59)个人简历、在读期间发表的学术论文与研究成果 (66)zhi ku quan 20150721zhi ku quan 20150721第1章绪论第1章绪论1.1 概述随着社会的不断发展,全球温室效应的逐渐严重和化石燃料(如石油、天然气和煤炭等)的日益消耗,能源问题已经成为当前人类面临的最大问题。