当前位置:文档之家› 高精度差分格式及湍流数值模拟(一)

高精度差分格式及湍流数值模拟(一)

➢ 2003年以前, 多采用人工粘性(或滤波); 近期, 多采用WENO 格式 不足: 耗散较大, 计算量大
➢ 新方法: 迎风紧致格式;群速度控制格式; 加权群速度控制格式(WGVC-M); 优化的保单调格式OMP; 优化的MUSCL方法
二、 高精度、高分辨率差分格式
1. 格式的精度、 分辨率及优化 1) 差分格式精度: 截断误差的阶数
高精度差分格式及 湍流数值模拟
提纲
Part 1. 高精度差分格式 Part 2. 湍流模拟 Part 3. OpenCFD及可压缩湍流直接数值模拟
提纲
Part 1. 高精度差分格式 1. 前言 2. 高精度高分辨率差分格式 格式的精度、分辨率及优化 常用的高分辨率格式: 紧致格式、TVD/保单调格式; WENO格式 3. 群速度控制格式
4阶精度 3阶精度
显然: x 足够小的情况下, 格式1误差更小 x 并非足够小的情况下,格式2 有可能误差更小
Copyright by Li Xinliang
精度特性
分辨率特性
15
➢网格分辨率: 有效波数 x 本身不能描述网格分辨率
无量纲化: x 2 kx
有效波数
kx
u u
u sin kx
间断有限元法; 大规模代数方程组高效解法 ……
➢ 复杂外形、复杂网格处理方法
自适应网格; 直角网格,浸入边界法; 无网格法; 粒子算法;
Copyright by Li Xinliang
8
传统计算方法: 有限差分法, 有限体积法 , 有限元法, 谱方法(谱元法)等; 最近发展的方法: 基于粒子的算法(格子-Boltzmann, BGK),无网格
1
10个点
0.5
0
-0.5
-1
0
1
2
3x
4
5
6
1
20个点
0.5
0
-0.5
-1
● 航天领域,CFD发挥着实验无法取代的作用 实验难点:复现高空高速流动条件
波音777
Copyright by Li Xinliang
波音787
7
CFD 面临的挑战及主要任务:
➢复杂流动的数学模型
湍流的计算模型; 转捩的预测模型; 燃烧及化学反应模型; 噪声模型……
➢ 高精度高效算法
高精度激波捕捉法;
U F1 F2 0 t x y
坐标变换 计算空间
每一维独立处理 一维重构(一维Taylor展开)
例如:
f x
j
a1 f j2
a2
f j1
a3 f j
a4 f j1
f j ( f j+1 f j1) / 2x
5 阶迎风差分格式
f j (2 f j3 15 f j2 60 f j1 20 f j 30 f j1 3 f j2 ) / 60x
ln(x)
2) 差分格式的分辨率
精度: 充分小网格 情况下的误差特性 分辨率: 有限尺度网格 情况下的误差特性
x 0
例:
格式1 格式2
u x
j
a1u j3
a2u j2
.......10
5u x5
x4
u x
j
b1u j3
b2u j2
.......
0.1
4u x4
x3
误差
YF-23,风洞实验5,500小时,CFD计算15,000机时
YF17 Copyright by Li XYinliFan1g7
YF23
6
● 90年代, CFD 在飞机设计中发挥了主力作用 波音777, CFD占主角
● 2000 之后, CFD 取代了大部分风洞实验 波音787:全机风洞实验仅3次
优点: 易于推广到高阶格式 不足: 要求网格足够光滑, 不易处理复杂外形
有限体积: 离散积分方程 (多维离散)
U t
1
Ñ
F
nds
0
k
控制体边界上进行重构
u(x,
y)
u
x0
,
y0
(x
x0
)
x
+(
y
y0
)
y
u
1 2!
(x
x0
)
x
(
y
y0
)
y
2
u
...
•多维重构(多维Taylor展开), 推广到高阶精度复杂
对于复杂方程处理 多用于固体力学
困难

计算量大;
复杂外形的高精
捕捉激波(限制器)度计算
难度大
外形、边界条件简 简单外形的高精

度计算
精度不易提高
复杂外形的工程 计算
Copyright by Li Xinliang
9
➢ 差分法 vs 有限体积法
… j-2 j-1 j j+1 …
差分法: 离散微分方程(一维离散)
有限差分法 有限体积法 有限元法 间断有限元 法(DG) 谱方法 粒子类方法
优点 简单成熟,可构造高精度 格式 守恒性好,可处理复杂网 格 基于变分原理,守恒性好
精度高、守恒性好、易于 处理复杂网格
精度高
算法简单,可处理复杂外 形
缺点
适用范围
处理复杂网格不够 相对简单外形的
灵活
高精度计算
不易提高精度(二 复杂外形的工程 阶以上方法复杂) 计算
u x
j
1 2x
(u j2
4u j1
3u j )
7 6
3u x3
j
x2
O(x3)
截断误差
方法1: Taylor展开,计算截断误差项 (非线性格式推导困难)
方法2: 数值实验
ln err
给定一测试函数(可精确求导),计算 误差对网格尺度的依赖关系
n = 斜率
err Axn
ln err ln A nln x
一、 前言
• 计算流体力学: Computational Fluid Dynamics 简称CFD
计算流体力学是通过数值方法求解流体力学控 制方程,得到流场的离散的定量描述,并以此 预测流体运动规律的学科
CFD: 通过离散求解流动方程得到流动信息
Copyright by Li Xinliang
4
流体力 学问题
理论
优点:准确快捷 不足: 难以找到精确解
实验 优点: 直接、可靠、最终验证方式 不足: 周期长、费用高
计算
优点: 周期短、费用低 不足: 受模型及算法限制,需验证
计算流体力学(CFD): 在航空航天领域得到广泛应用 ● 1970 年代, 飞机设计主要依赖风洞实验
YF-17研制,风洞实验13,500小时 ● 1980年代,CFD逐渐发展, 部分取代实验
优点: 对网格光滑性要求不高,可处理复杂外形 不足: 推广到高阶精度难度大
0
1
xபைடு நூலகம் , y0
➢高精度差分法: 复杂流动的精细模拟 典型应用: 湍流精细模拟 (直接数值模拟、 大涡模拟)
湍射流的涡量分布:DNS
RANS
➢ 湍流精细模拟 与 高精度格式
➢ 激波给可压湍流DNS的数值方法带来巨大挑战 矛盾: 低耗散 vs. 抑制振荡(需要耗散)
相关主题