当前位置:文档之家› 洛伦兹力在现代科技中的应用 修改版

洛伦兹力在现代科技中的应用 修改版

A S C S 1S 2S 3S 4Vr P F B D B 0V U M N 洛伦兹力在现代科技中的应用一.速度选择器原理:其功能是选择出某种速度的带电粒子1.结构:如图所示(1)平行金属板M 、N ,将M 接电源正极,N 板接电源负极,M 、N 间形成匀强电场,设场强为E ;(2)在两板之间的空间加上垂直纸面向里的匀强磁场,设磁感应强度为B ;(3)在极板两端加垂直极板的档板,档板中心开孔S 1、S 2,孔S 1、S 2水平正对。

2.原理设一束质量、电性、带电量、速度均不同的粒子束(重力不计),从S 1孔垂直磁场和电场方向进入两板间,当带电粒子进入电场和磁场共存空间时,同时受到电场力和洛伦兹力作用υBq F Eq F ==洛电, 若洛电F F = υBq Eq = v E B 0=。

当粒子的速度v E B0=时,粒子匀速运动,不发生偏转,可以从S 2孔飞出。

由此可见,尽管有一束速度不同的粒子从S 1孔进入,但能从S 2孔飞出的粒子只有一种速度,而与粒子的质量、电性、电量无关3. 粒子匀速通过速度选择器的条件——带电粒子从小孔S 1水平射入, 匀速通过叠加场, 并从小孔S 2水平射出,电场力与洛仑兹力平衡, 即υBq Eq =;即v E B 0=; 当粒子进入速度选择器时速度v E B0≠, 粒子将因侧移而不能通过选择器。

如图, 设在电场方向侧移∆d 后粒子速度为v , (1) 当BE v >0时: 粒子向洛伦兹力f 方向侧移 电场力F 做负功,粒子动能 减少, 电势能增加, 有2202121mv d qE mv +∆= (2) 当B E v <0时:粒子向电场力F 方向侧移,F 做正功,粒子动能增加, 电势 能减少, 有1212022mv qE d mv +=∆ 二.质谱仪 主要用于分析同位素, 测定其质量, 荷质比和含量比,1.质谱仪的结构原理(1)离子发生器O (发射出电量q 、质量m 的粒子从A 中小孔S 飘出时速度大小不计)(2)静电加速器C :静电加速器两极板M 和N 的中心分别开有小孔S 1、S 2,粒子从S 1进入后,经电压为U 的电场加速后,从S 2孔以速度v 飞出;(3)速度选择器D :由正交的匀强电场E 0和匀强磁场B 0构成,调整E 0和B 0的大小可以选择度为v 0=E 0/B 0的粒子通过速度选择器,从S 3孔射出;(4)偏转磁场B :粒子从速度选择器小孔S 3射出后,从偏转磁场边界挡板上的小孔S 4进入,做半径为r 的匀速圆周运动;(5)感光片F :粒子在偏转磁场中做半圆运动后,打在感光胶片的P 点 被记录,可以测得PS 4间的距离L 。

装置中S 、S 1、S 2、S 3、S 4五个小孔在同一条直线上2.问题讨论:质量m 和比荷的两种表达形式表达式一:设粒子的质量为m 、带电量为q (重力不计),粒子经电场加速由动能定理有:221υm qU = ①; 粒子在偏转磁场中作圆周运动有:Bq m L υ2= ②; 联立①②得:U L qB m 822= ,比荷228LB U m q = 表达式二:同位素荷质比和质量的测定: 粒子通过加速电场,通过速度选择器, 根据匀速运动的条件: 0B E v =。

若测出粒子在偏转磁场的轨道直径为L , 则Bq B mE Bq mv R L 0222===, 所以同位素的荷质比和质量分别为EBqL B m BL B E m q 2;200==。

三.磁流体发电机磁流体发电就是利用等离子体来发电。

1.等离子体的产生:在高温条件下(例如2000K )气体发生电离,电离后的气体中含有离子、电子和部分未电离的中性粒子,因为正负电荷的密度几乎相等,从整体看呈电中性,这种高度电离的气体就称为等离子体,也有人称它为“物质的第四态”。

2.工作原理:磁流体发电机结构原理如图(1)所示,其平面图如图(2)所示。

M 、N 为平行板电极,极板间有垂直于纸面向里的匀强磁场,让等离子体平行于极板从左向右高速射入极板间,由于洛伦兹力的作用,正离子将向M 板偏转,负离子将向N 板偏转,于是在M 板上积累正电荷,在N 板上积累负电荷。

这样在两极板间就产生电势差,形成了电场,场强方向从M 指向N ,以后进入极板间的带电粒子除受到洛伦兹力洛F 之外,还受到电场力电F 的作用,只要电洛F F >,带电粒子就继续偏转,极板上就继续积累电荷,使极板间的场强增加,直到带电粒子所受的电场力电F 与洛伦兹力洛F 大小相等为止。

此后带电粒子进入极板间不再偏转,极板上也就不再积累电荷而形成稳定的电势差3.电动势的计算: 设两极板间距为d , 根据两极电势差达到最大值的条件电洛F F =, 即dBB E v ε==, 则磁流体发电机的电动势ε=Bdv 。

四.回旋加速器1932年美国物理学家劳伦斯发明的回旋加速器,是磁场和电场对运动电荷的作用规律在科学技术中的应用典例,回旋加速器是用来加速带电粒子使之获得高能量的装置。

1.回旋加速器的结构。

回旋加速器的核心部分是两个D 形金属扁盒(如图所示),在两盒之间留有一条窄缝,在窄缝中心附近放有粒子源O 。

D 形盒装在真空容器中,整个装置放在巨大的电磁铁的两极之间,匀强磁场方向垂直于D 形盒的底面。

把两个D 形盒分别接到高频电源的两极上。

2.回旋加速器的工作原理。

如图所示,从粒子源O 放射出的带电粒子,经两D 形OB盒间的电场加速后,垂直磁场方向进入某一D 形盒内,在洛伦兹力的作用下做匀速圆周运动,经磁场偏转半个周期后又回到窄缝。

此时窄缝间的电场方向恰好改变,带电粒子在窄缝中再一次被加速,以更大的速度进入另一D 形盒做匀速圆周运动……,这样,带电粒子不断被加速,直至它在D 形盒内沿螺线轨道运动逐渐趋于盒的边缘,当粒子达到预期的速率后,用特殊装置将其引出。

3.问题讨论。

(1)高频电源的频率电f 。

带电粒子在匀强磁场中运动的周期Bq m π2T =,带电粒子运动时,每次经过窄缝都被电场加速,运动速度不断增加,在磁场中运动半径不断增大,但粒子在磁场中每运动半周的时间qB m T t π==2不变。

由于窄缝宽度很小,粒子通过电场窄缝的时间很短,可以忽略不计,粒子运动的总时间只考虑它在磁场中运动的时间。

因此,要使粒子每次经过窄缝时都能被加速的条件是:高频电源的周期与带电粒子运动的周期相等(同步),即高频电源的频率为mqB f π2=电,才能实现回旋加速。

(2)粒子加速后的最大动能E km 由于D 形盒的半径R 一定,粒子在D 形盒中加速的最后半周的半径为R ,由R m Bq 2υυ=可知mBqR =υ,所以带电粒子的最大动能mR q B m E km 222222==υ。

虽然洛伦兹力对带电粒子不做功,但E km 却与B 有关; 由于km E m nqU ==22υ,由此可知,加速电压的高低只会影响带电粒子加速的总次数,并不影响回旋加速后的最大动能。

(3)能否无限制地回旋加速。

由于相对论效应,当带电粒子速率接近光速时,带电粒子的质量将显著增加,从而带电粒子做圆周运动的周期将随带电粒子质量的增加而加长。

如果加在D 形盒两极的交变电场的周期不变的话,带电粒子由于每次“迟到”一点,就不能保证粒子每次经过窄缝时总被加速。

因此,同步条件被破坏,也就不能再提高带电粒子的速率了(4)粒子在加速器中运动的时间:设加速电压为U ,质量为m 、带电量为q 的粒子共被加速了n 次,若不计在电场中运动的时间,有: m R q B E nqU km 2222==所以mUqR B n 222= 又因为在一个周期内带电粒子被加速两次,所以粒子在磁场中运动的时间U BR T n t 222π==磁若计上粒子在电场中运动的时间,则粒子在两D 形盒间的运动可视为初速度为零的匀加速直线运动,设间隙为d ,有:221电t md qU nd ⋅= 所以UBdR qU m nd t ==22电 故粒子在回旋加速器中运动的总时间为:U R d BR t t t 2)2(π+=+=磁电 因为d R >>,所以电磁t t >>,故粒子在电场中运动的时间可以忽略【例题】有一回旋加速器,两个D 形盒的半径为R ,两D 形盒之间的高频电压为U ,偏转磁场的磁感强度为B 。

如果一个α粒子和一个质子,都从加速器的中心开始被加速,试求它们从D 形盒飞出时的速度之比。

错解:当带电粒子在D 形盒内做圆周运动时,速率不变。

当带电粒子通过两个D 形盒之间的缝隙时,电场力对带电粒子做功,使带电粒子的速度增大。

设带电粒子的质量为m ,电荷为q ,在回旋加速器中被加速的次数为n ,从D 形盒飞出时的速度为V ,根据动能定理有:221mV nqU =,解得mnqU V 2=。

由上式可知,带电粒子从D 形盒飞出时的速度与带电粒子的荷质比的平方根成正比,所以21=H V V α。

分析纠错:上法中认为α粒子和质子在回旋加速器内被加速的次数相同的,是造成错解的原因。

因带电粒子在D 形盒内做匀速圆周运动的向心力是由洛仑兹力提供的,对带电粒子飞出回旋加速器前的最后半周,根据牛顿第二定律有:R V m qBV 2=解得mq BR V =。

因为B 、R 为定值,所以带电粒子从D 形盒飞出时的速度与带电粒子的荷质比成正比。

因α粒子的质量是质子质量的4倍,α粒子的电荷量是质子电荷量的4倍,故有:21=H V V α 五.霍尔效应1.霍尔效应。

金属导体板放在垂直于它的匀强磁场中,当导体板中通过电流时,在平行于磁场且平行于电流的两个侧面间会产生电势差,这种现象叫霍尔效应。

2.霍尔效应的解释。

如图,截面为矩形的金属导体,在x方向通以电流I,在z方向加磁场B,导体中自由电子逆着电流方向运动。

由左手定则可以判断,运动的电子在洛伦兹力作用下向下表面聚集,在导体的上表面A 就会出现多余的正电荷,形成上表面电势高,下表面电势低的电势差,导体内部出现电场,电场方向由A 指向A ’,以后运动的电子将同时受洛伦兹力洛F 和电场力电F 作用,随着表面电荷聚集,电场强度增加,电F 也增加,最终会使运动的电子达到受力平衡(电洛F F =)而匀速运动,此时导体上下两表面间就出现稳定的电势差。

3.霍尔效应中的结论。

设导体板厚度为h(y 轴方向)、宽度为d 、通入的电流为I ,匀强磁场的磁感应强度为B ,导体中单位体积内自由电子数为n ,电子的电量为e ,定向移动速度大小为v ,上下表面间的电势差为U ;(1)由h Uq Bq =υ⇒υBh U =①。

(2)实验研究表明,U 、I 、B 的关系还可表达为d IB kU =②,k 为霍尔系数。

又由电流的微观表达式有:υυnehd nes I ==③。

相关主题