高性能聚合物
Yu ZZ. J Appl Polym Sci 1998, 69, 1711
Improved Stiffness
2.5
Nylon 6/POEg Nylon 6/POEg/Epoxy (0.3 phr)
2
Flexural modulus (GPa)
1.5
1
0.5 0 5 10 15 POEg content (wt %) 20 25 30
Using Two Conducting Fillers
Epoxy / CB / CNT
Kim JK, et al. ACS Appl. Mater. Interfaces 2009, 1, 1090
Embrittlement
blended with an immiscible polymer
Contribution of Epoxy Monomer
1200
Nylon 6/POEg
1000
Nylon 6/POEg/Epoxy (0.3 phr)
Notched Izod impact strength (J/m)
800
600
400
200
0 0 5 10 15 20 25 30 POEg content (wt %)
Reaction between anhydride and amine groups
CH C O O CH2 C O POEg + NH2 PA 6
CH CH2 POEg
O C NH C OH O
PA 6
- H2O
CH
C
O N PA 6
CH2 C O POEg
Chain Extension Reaction of Epoxy
400
c = 0.3 m
200
0 0.01 0.1 1 10
Matrix ligament thickness (µm)
Wu S. Polymer 1985, 26, 1855
HDPE/Rubber Blends
c = 0.6 m
c = 0.6 m
Argon AS. Polymer 1999, 40, 2331
Mn
20, 000 24, 000 26, 000
Dual Roles of the Epoxy in Nylon 6 / POEg
Increased melt viscosity of nylon 6 matrix by chain extension reaction
in situ formed nylon 6-co-epoxy-co-POEg copolymers by coupling reactions at nylon 6/POEg interface
PE + CB
PS
Gubbels F, et al. Macromolecules 1994, 27, 1972
Selective Localization of CB
PE 5%
PE/PS
3% PS 8% Interface 0.4%
Gubbels F, et al. Macromolecules 1994, 27, 1972
Smaller d
c
= d [ ( / 6 )1/3 – 1]
η d ~ 1 η m
minimum d
Wu S. Polymer 1987, 27, 335
η d > 1 η m
To increase m To decrease d
Compatibilization: Nylon 6 / POEg
Acta Materialia 2007, 55, 635
Sub-Surface Deformation
Notch
Fracture Surface
Subsurface Deformed Zone
N3: (Nylon 66+Clay)+SEBS-g-MA
Filled with an insulating filler PP / CB + CaCO3 Use two conducting fillers
PP / CB + CNT
Blended with an Immiscible Polymer
PE/PS (45/55) Cocontinuous Blend with 1% Carbon Black CB at PE/PS Interface
PP / CB + PS Filled with an insulating filler
PP / CB + CaCO3
Use two conducting fillers
PP / CB + CNT
Purposes
make a polymer conductive and super-tough
PA 6 NH2 + CH2 CH O DGEBA CH O CH2 + NH2 PA 6
PA 6
NH
CH2
CHOH
DGEBA
CHOH
CH2
NH
PA 6
Composition Nylon 6 Nylon 6 / Epoxy (0.3 phr) Nylon 6 / Epoxy (0.6 phr)
Mw
31, 000 36, 000 41, 000
Wu S. Polymer 1985, 26, 1855
Nylon 66/Rubber Blends:
1400
c = 0.3 μm
EPDM-g-MA Content in Nylon 66
1200
25 Notched Izod impact strength (J/m)
1000
15
800
10
600
Air Bus 2005
1 橡胶增韧聚合物 及增韧机理
Toughening of Nylon 66 with SEBS-g-MA
Polymer 1992, 32, 284
To Reduce Stiffness Loss
Approaches
To reduce rubber content by increasing viscosity of matrix To reduce rubber content by decreasing viscosity of rubber
(Nylon 66 + SEBS-g-MA) + Organoclay
d ~ 202 nm
Nylon 66 + (Organoclay + SEBS-g-MA)
N2
N 3
N 4
N4
d ~ 137 nm
d ~ 281 nm d ~ 281 nm
Location and Exfoliation of Clay
T < 100 nm Graphene
Increased Conductivity
Carbon Black Nanotube Nylon 6
Meincke O, et al. Polymer 2004, 45, 739
Reduced Ductility
Nylon 6 /ABS
CB
CNT
Meincke O, et al. Polymer 2004, 45, 739
Reduced Toughness
Nylon 6 / ABS
CNT
CB
Meincke O, et al. Polymer 2004, 45, 739
Approach to Decrease Filler Loading
Blended with an immiscible polymer
PP / CB + PS
Improved Dispersion Quality
SEM photographs of freeze-fractured surface
(a) 0.6 m (b) 0.2 m
Nylon 6 / POEg (80 / 20)
Nylon 6 / POEg / Epoxy (80/20/0.3)
Nylon 66 + SEBS-g-MA + Organoclay (Nylon 66 + SEBS-g-MA) + Organoclay
Organoclay) + SEBS-g-MA Nylon 66 + (SEBS-g-MA + Organoclay)
N3
N4
Quantification of Clay in Nylon 66 Matrix and SEBS-g-MA Particles
Composites Science and Technology 2006, 66, 3097
Dispersion of SEBS-g-MA
Nylon 66 + Organoclay + SEBS-g-MA (Nylon 66 + Organoclay) + SEBS-g-MA
N1
N3
d ~ 120 nm
PP / CB + CNT
Filled with an Insulating Filler
PP + CNT + CaCO3
CaCO3 0% 20% 30%
Yu J, et al. Polymer 2008, 49, 3826
Using Two Conducting Fillers
CNT
CB
Kim JK, et al. ACS Appl. Mater. Interfaces 2009, 1, 1090