材料的疲劳性能
一.本章的教学目的与要求
本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。
二.教学重点与难点
1. 疲劳破坏的一般规律(重点)
2.金属材料疲劳破坏机理(难点)
3. 疲劳抗力指标(重点)
4.影响材料及机件疲劳强度的因素(重点)
5热疲劳(难点)
三.主要外语词汇
疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting
value疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation
热疲劳:thermal fatigue
四. 参考文献
1.帆,周伟敏.材料性能学.:交通大学,2009
2.束德林.金属力学性能.:机械工业,1995
3.石德珂,金志浩等.材料力学性能.:交通大学,1996
4.修麟.材料的力学性能.:西北工业大学,1994
5.伟之,时熙等.工程材料力学性能.:航空航天大学,1991
6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81
五.授课容
第五章 材料的疲劳性能
第一节 疲劳破坏的一般规律
1、疲劳的定义
材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。
2、变动载荷指大小或方向随着时间变化的载荷。
变动应力:变动载荷在单位面积上的平均值
分为:规则周期变动应力和无规则随机变动应力
3、循环载荷(应力)的表征
①最大循环应力:σmax
②最小循环应力:σmin
③平均应力: σm=(σmax +σmin)/2
④应力幅σa或应力围Δσ:Δσ=σmax-σmin σa=Δσ/2=(σmax-σmin)/2
⑤应力比(或称循环应力特征系数): r= σmin/σmax
5、循环应力分类
按平均应力、应力幅、应力比的不同,循环应力分为
① 对称循环σm=(σmax + σmin)/2=0 r=-1
属于此类的有:大多数旋转轴类零件。
② 不对称循环
σm≠0
如:发动机连杆、螺栓
(a)σa> σm>0,-1 (b)σa> 0,σm<0,r<-1 ③ 脉动循环 σm=σa>0,r=0(σmin=0)如:齿轮的齿根、压力容器。 σm=σa<0,r=∞(σmax=0)如:轴承(压应力) ④ 波动循环 σm> σa 0 ⑤ 随机变动应力 应力大小、方向随机变化,无规律性。 如:汽车、飞机零件、轮船。 二、疲劳破坏的特点 在变动载荷作用下,材料薄弱区域,逐渐发生损伤,损伤累积到一定程度→产生裂纹,裂纹不断扩展→失稳断裂。 特点:从局部区域开始的损伤,不断累积,最终引起整体破坏。 1、潜藏的突发性破坏,脆性断裂(即使是塑性材料)。 2、属低应力循环延时断裂(滞后断裂)。 3、对缺陷十分敏感(可加速疲劳进程)。 三、疲劳破坏的分类 1、按应力状态: 弯曲疲劳 扭转疲劳 拉压疲劳 接触疲劳 复合疲劳 2、按应力大小和断裂寿命 N>105,б<бs 高周疲劳→低应力疲劳 N=102~105,б≥бs 低周疲劳→高应力疲劳 四、疲劳破坏的表征—疲劳寿命 疲劳寿命:材料疲劳失效前的工作时间,即循环次数N。 疲劳曲线: 应力б↑,N↓ 五、疲劳断口的宏观特征 典型疲劳断口具有3个特征区:疲劳源 疲劳裂纹扩展区 瞬断区 1、疲劳源 疲劳裂纹萌生区,多出现在零件表面,与 加工刀痕、缺口、裂纹、蚀坑等相连。 特征:光亮,因为疲劳源区裂纹表面受反复挤压、摩擦次数多。 疲劳源可以是一个,也可以有多个。如:单向弯曲,只有一个疲劳源;双向弯曲,可出现两个疲劳源。 2、疲劳裂纹扩展区(亚临界扩展区) 特征:断口较光滑并分布有贝纹线或裂纹扩展台阶。 贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向,近疲劳源区贝纹线较细密(裂纹扩展较慢),远疲劳源区贝纹线较稀疏、粗糙(裂纹扩展较快)。 σ N σ 0 贝纹线(海滩花样) 贝纹线区的大小取决于过载程度及材料的韧性,高名义应力或材料韧性较差时,贝纹线区不明显;反之,低名义应力或高韧性材料,贝纹线粗且明显,围大。 名义载荷 根据额定功率用力学公式计算出作用在零件上的载荷。即机器平稳工作条件下作用于零件上的载荷。 计算载荷=载荷系数*名义载荷 3、瞬断区 裂纹失稳扩展形成的区域 断口特征: 断口粗糙,脆性材料断口呈结晶状;韧性材料断口在心部平面应变区呈放射状或人字纹状;表面平面应力区则有剪切唇区存在。 瞬断区一般在疲劳源对侧 瞬断区大小与名义应力、材料性质有关 高名义应力或脆性材料,瞬断区大;反之,瞬断区小。 第二节 疲劳破坏的机理 一、金属材料疲劳破坏的机理 1、疲劳裂纹的萌生(形核) 第Ⅰ阶段在循环应力作用下,裂纹萌生常在材料薄弱区或高应力区。通过不均匀滑移或显微开裂 (如第二相、夹杂物、晶界或亚晶界)等方式完成。 通常将长0.05-0.10mm的裂纹定为疲劳裂纹核,对应的循环周期N,为微裂纹萌生期。 驻留滑移带: 在循环载荷作用下,即使循环载荷未超过材料屈服强度,也会在材料表面形成循环滑移带—不均匀滑移,其与静拉伸形成的均匀滑移不同,循环滑移带集中于某些局部区域,用电解抛光法也难以去除,即使去除了,再重新循环加载,还会在原处再现。 不均匀滑移 驻留滑移带在表面加宽过程中,会形成挤出脊和侵入沟,从而引起应力集中,形成疲劳微裂纹→形核(萌生)。 挤出和侵入模型 表面易产生疲劳裂纹的原因 (1)在许多载荷方式下,如扭转疲劳,弯曲和旋转弯曲疲劳等,表面应力最大。 (2)实际构件表面多存在类裂纹缺陷,如缺口,台阶,键槽,加工划痕等,这些部位极易由应力集中而成为疲劳裂纹萌生地。 (3)相比于晶粒部,自由表面晶粒受约束较小,更易发生循环塑性变形。 (4)自由表面与大气直接接触,因此,如果环境是破坏过程中的一个因素,则表面晶粒受影响较大。 2、疲劳裂纹的扩展 → 第Ⅱ阶段 疲劳裂纹形核后,在室温及无腐蚀条件下 第Ⅰ阶段属于微裂纹扩展 第Ⅱ阶段呈穿晶扩展,扩展速率da/dN 随 N的增加而增大。 在多数韧性材料的第Ⅱ 阶段,断口用电子显微镜可看到韧性条带而脆性材 料中可看到脆性条带。 疲劳条带(辉纹)呈略弯曲并相互平行的沟槽状花样,与裂纹扩展方向垂直。 与贝纹线不同,疲劳条带是疲劳断口的微观特征。 疲劳条带形成的原因: 裂纹尖端的塑性开,钝化和闭合钝化,使裂纹向前延续扩展疲劳裂纹的形成与扩展模型。 韧性疲劳条带与脆性疲劳条带形貌 疲劳条带的形成模型(Laird-Smith模型): 疲劳条带的形成模型—再生核模型(F-R) 韧性条带与脆性条带的区别: 二、非金属材料疲劳破坏机理 1、 瓷材料的疲劳破坏机理 静态疲劳相当于金属中的延迟断裂,即在一定载荷作用下,材料耐用应力随时间下降的现象。 动态疲劳在恒定加载条件下,研究材料断裂失效对加载速率的敏感性。 循环疲劳在长期变动应力作用下,材料的破坏行为。 瓷材料断口呈现脆性断口的特征。 2、高分子聚合物的疲劳破坏机理 ⑴ 非晶态聚合物 a、高循环应力时,应力很快达到或超过材料银纹的引发应力,产生银纹,随后转变成裂纹,扩展后导致材料疲劳破坏。 b、中循环应力也会引发银纹,形成裂纹,但裂纹扩展速率较低(机理相同)。 c、低循环应力,难以引发银纹,由材料微损伤累积及微观结构变化产生微孔及微裂纹,最终裂纹扩展导致宏观破坏。 ⑵ 结晶态高聚合物或低应力循环的非晶态高聚合物,疲劳过程有以下现象: ①整个过程,疲劳应变软化而不出现硬化。 ②分子链间剪切滑移,分子链断裂,结晶损伤,晶体结构变化。 ③产生显微孔洞,微孔洞合并成微裂纹,并扩展成宏观裂纹。 ④断口呈裂纹扩展形成的肋状形态,断口呈丛生簇状结构(拉拔)。 ⑶ 高聚物的热疲劳 由于聚合物为粘弹性材料,具有较大面积的应力滞后环,所以在应力循环过程中,外力所做的功有相当一部分转化为热能;而聚合物导热性能差,因此温度急剧升高,甚至高于熔点或玻璃化转变温度,从而产生热疲劳。 热疲劳常是聚合物疲劳失效的主要原因。因此疲劳循环产生的热量,使聚合物升温,可以修补高分子、的微结构损伤,使机械疲劳裂纹形核困难。 ⑷聚合物疲劳断口可观察到两种特征的条纹 A、疲劳辉纹 每周期的裂纹扩展10μm(间距)。 聚合物相对分子量较高时,在 所有应力强度因子条件下,皆可形成疲劳辉纹。 B、疲劳斑纹 不连续、跳跃式的裂纹扩展,50μm间距 而相对分子量较低时,在较低应力强度因子时,易形成疲劳斑纹。 3、复合材料的疲劳破坏机理 ⑴ 复合材料疲劳破坏的特点 a、多种疲劳损伤形式:界面脱粘、分层、纤维断裂、空隙增长等。 b、不发生瞬断,其疲劳破坏的标准与金属不同,常以弹性模量下降的百分数1%-2%),共振频率变化(1-2HZ)作为破坏依据。 c、聚合物基复合材料,以热疲劳为主,对加载频率感。 d、较大的应变引起纤维与基体界面开裂形成疲劳源(纤维、基体的变形量不同)压缩应变使复合材料纵向开裂,故对压缩敏感。 e、复合材料的疲劳性能与纤维取向有关纤维是主要承载组分,沿纤维方向具有很好的疲劳强度;而沿纤维垂直方向,疲劳强度较低。 对于复合材料,界面结合非常重要,因为:基体与纤维的E不同,变形量不同,故界面产生很大的剪切应力。