当前位置:文档之家› 初中数学竞赛专题:几何不等式与极值问题

初中数学竞赛专题:几何不等式与极值问题

初中数学竞赛专题:几何不等式与极值问题17.1.1★ 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值.解析考虑这个凸行边形的n 个外角,有4n -个角90︒≥,故有()490360n -⨯︒<︒(严格小于是由于4个钝角的外角和大于0︒),因此8n <,n 的最大值是7.易构造这样的例子。

如果恰好有k 个钝角,则n 的最大值是3k +. 17.1.2★在ABC △中,AB AC >,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-.PCDB A解析 易知AB AC PB PC +>+,又2222AB AC BD CD -=-22PB PC =-,故有AB AC PB PC -<-. 评注读者不妨考虑AD 是角平分线与中线的情况.17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值.CB ODA解析 易知ABO BCOADO DCOS S BO S DO S ==△△△△,故36ABO CDO ADO BCO S S S S ⋅=⋅=△△△△.从而12ABO CDO S S +△△≥,且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 17.1.4★已知:直角三角形ABC 中,斜边BC 上的高6h =.(1)求证:BC h AB AC +>+;(2)求()()22BC h AB AC ++-. 解析()()22BC h AB AC +-+222222BC h BC h AB AC AB AC =++⋅---⋅,由条件,知242ABC BC h S AB AC ⋅==⋅△,且222AB AC BC +=, 于是()()22236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 17.1.5★设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值.B FCED A解析设 BF x =,()4DE y x ==-,则()()()117101077022ABF ADE ECF S S S x y x y xy ++=++--=+⎡⎤⎣⎦△△△。

由()2144xy x y +=≤。

故()170704332AEF S -⨯+=△≥.当2BF ED ==时达到最小值. 17.1.6★设P 是定角A ∠内一定点,过P 作动直线交两边于M 、N ,求证:AMN △面积最小时,P为MN 的中点.解析 如图,连结AP ,设MAP α∠=,NAP β∠=,θαβ=+,由AMP ANP MAN S S S +=△△△,得sin sin sin AM AP AN AP AM AN αβθ⋅⋅+⋅⋅=⋅。

又 左式2AP ≥,故 212sin sin sin 2sin AMN AP S AM AN αβθθ=⋅⋅△≥。

达到最小值时,须AMP ANP S S =△△,故P 为MN 之中点. 17.1.7★正三角形ABC 的边长为1,M 、N 、P 分别在BC 、CA 、AB 上,1BM CN AP ++=,求MNP △的最大面积。

ABCMPNxyz解析 如图,设BM x =,CN y =,AP z =,则0x ≤,y ,1z ≤,1x y z ++=。

()()()1111sin602APN BPM MNC S S S x z y x z y ++=-+-+-︒⎡⎤⎣⎦△△△, 于是问题变为求()()()111x z y x z y -+-+-的最小值,展开后约去()1x y z ++=,即求xz yx zy ++的最大值. 由不等式()21133xy yz zx x y z ++++=≤知,当13x y z ===时,29APN BPM MNC ABC S S S S ===△△△△,此时MNP S △的面积达到最大值。

()max 13MNP ABC S S =△△17.1.8★设ABC △是边长为l 的正三角形,过顶点A 引直线l ,顶点B 、C 到l 的距离记为1d 、2d ,求12d d +的最大值.lCPBlAQ解析如图,若l 穿过BC ,则由“直角边小于斜边”知121d d BC +=≤,取到等号时仅当l BC ⊥.若l 不经过BC ,取BC 中点P ,作PQ l ⊥,Q 在l 上,则1222d d PQ AP +==≤取到等号仅当l BC ∥.综上所述,12d d +17.1.9 在数1、12、13、14、15、16、17、18、19、110中,若任找三个数能组成三角形的三边,则称这三个数是“好搭档”,则总共有多少组“好搭档”? 解析此题可分类讨论。

显然1不可能为边. 由于1115910<+,故15⎧⎨⎩,16,17,18,19,110⎫⎬⎭中任三数可构成三角形的三边,一共有6!203!3!=组。

当最大边为12时,次大边只能为13,最小边为14或15,有2组。

当最大边为13时,次大边为14或15.次大边为14时,最小边1113412>-=,故可取11~510;次大边为15时,最小边1123515>-=,可取16与17共有8组. 当最大边为14时,次大边为15、16、17.次大边 为15时,最小边1114520>-=,可取11~610;次 大边为16时,最小边1114612>-=,可取11~710; 次大边为17时,最小边1134728>-=,可取18和19。

共有11组。

综上所述,总共有41组. 17.1.10★设60XOY ∠=︒,A 、B 是OX 上的两个定点,P 是OY 上的一个动点,问当P 在什么位置时,22PA PB +最小?60°YPOA B X解析 如图,设OA a =,OB b =,OP x =,不妨设a b <。

则222PA a x ax =+-,222PB b x bx =+-,故 ()222222PA PB x a b x a b +=-+++()2222248a b a b x a b ++⎛⎫=-++- ⎪⎝⎭。

显然当4a bx +=时,22PA PB +最小。

评注容易验证,此时P 为AB 的中点在OY 上的射影。

17.1.11★设直角ABC △中,90C ∠=︒,求证:24ABC AB S △≤. 解析 如图,作A 关于BC 的对称点A ',连结'A B 、'A C ,则ACA'B'12ABC BAA S S =△△1'sin '4AB A B ABA =⋅⋅∠ 2211sin 244AB B AB =≤. 取等号仅当ABC △为等腰直角三角形。

17.1.12★X 是ABC △的边AB 上一点,P 为ACX △的内心,Q 是BCX △的内心,M 是PQ 的中点,求证:MC MX >. 解析如图,连结XP 、XQ 、CP 、CQ ,则90QXP ∠=︒,12MX PQ =,又1902PCQ BCA ∠=∠<︒,故12CM PQ >,于是结论成立。

CBQMP X A评注 三角形某边上的中线分别大于、等于、小于该边的充要条件是该边所对内角为锐角、直角或钝角,这是一个常见的结论.17.1.13★★ 已知凸六边形ABCDEF 中,AF CD ∥,AB ED ∥,BC EF ∥, 求证:ACE BDF ABCDEF S S S +△△≥.QP REDC BF A解析 如图,作ABCD □、QCDE □、EFAR □,于是出现三组全等三角形。

这样便有()2ACE PQR PQR ABCDEF S S S S -+=△△△六边形,即 ()1+2ACE PQR ABCDEFS SS =△△六边形 12ABCDEF S 六边形≥. 同理有 12BDF ABCDEF S S △六边形≥. 评注不破除对称性,此题就比较复杂(当然不是所有的题目都能带给你好运).另外,用这种方法还能证明ACE BDF S S =△△.17.1.14★★ 已知矩形ABCD ,3AB =,5BC =,P 是AD 上一点,CP 、BA 延长后交于M ,直线CQ 垂直于BP ,交BM 于Q ,若Q 为MB 中点,求AP .又条件同上,若BC 的长度不固定,求BC 的最小值.QCBDPA M解析 如图,设AP x =,由MBC △∽CDP △,得MB CD BC PD =,代入得155MB x=-。

又APB △∽BQC △,得BQ AP BC AB =,53BQ x =。

由2MB BQ =,得3253x x =-,或221090x x -+=,解得x 。

若BC 长度不固定,设其为y ,3y MB y x =-,3xyBQ =,故由2MB BQ =得323x y x =-,或22290x yx -+=,由0∆≥得y ≥BC可取的最小值是此时P 为AD 中点。

17.1.15★★ 设I 为ABC △的内心,P 是ABC △内部的一点,满足PBA PCA PBC PCB ∠+∠=∠+∠. 求证:AP AI ≥,并说明等号成立的充分必要条件是P I =.IPCB A解析 易知()12PBC PCB B C IBC ICB ∠+∠=∠+∠=∠+∠, 因此 BPC BIC ∠=∠.故B 、C 、I 、P 四点共圆,即点P 在BCI △的外接圆ω上。

记ABC △的外接圆为Ω,则ω的中心M 为Ω的BC 的中点,即为A ∠的平分线AI 与Ω的交点。

在APM △中,有AP PM AM AI IM AI PM +=+=+≥,故 AP AI ≥.等号成立的充分必要条件是点P 位于线段AI 上,即P I =.17.1.16★★ 延长一凸四边形形的四边和对角线,得六条直线,任两条直线有一个不大于90︒的夹角(这些线无两条平行),求这些夹角中最小的一个的最大值.654321FEC B A解析 如图,标好各角,则12345612180ACB ABC ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒,故总有一角30︒≤,当ABC △为正三角形,DB AB ⊥、DC AC ⊥时最小角达到最大值30︒17.1.17★★ 凸四边形ABCD 中,点M 、P 分别是BC 、CD 的中点,若AM AP a +=,求证:21<2ABCD S a 四边形。

B M CPDA解析 如图,连结AC 、MP ,易知1142AMP BDC AMCP ABCD S S S S +==△△四边形四边形.又BDC ABCD S S <△四边形,1sin 2AMP S AM AP MAP =⋅∠△ 221()1288AM AP AM AP a +⋅=≤≤, 因此 2111248ABCD ABCD S S a <+四边形四边形, 即212ABCD S a <四边形.17.1.18★★★ 在三角形ABC 中,4AC =,6BC =,2BAC ABC ∠=∠.P 是平面上任意一点,求32PA PB PC ++的最小值.64CB AD解析 因为32U PA PB PC =++2()()PA PB PA PC =+++224AB AC AB +=+≥.下面来求AB .延长BA 至D ,使得DA AC =,连结CD ,则12D DCA BAC ABC ∠=∠=∠=∠,所以DCA △∽DBC △,故DC DABD DC=,所以2DC DA DB =⋅,即364(4)AB =+,故5AB =. 所以,所求的最小值为14.17.1.19★★ 在锐角三角形ABC 中,求证:cos cos 2sin2A B C +≤. 解析 当B C ∠=∠时,显然有cos cos 2sin 2A B C +=.下面不妨设AB AC >.BED CG H F A在AB 上取点F ,使AF AC =.作角平分线AE 、高AD ,则AE 垂直平分CF .又作FH AD ⊥于H ,AD 与CF 交于G ,则2sincos cos 2A CF FG CG FH CDB C AC FA AC FA AC==+>+=+. 17.1.20★★ ABC △中,点D 为BC 之中点,点E 、F 分别在AC 、AB 上,求证:2DEF ABC AEF S S S <-△△△.解析 如图,连结BE 、CF ,则由BD CD =,得2DEF BEF CEF S S S =+△△△.CD B EFA而BEF BCF S S <△△,故BEF CEF BCF CEF ABC AEF S S S S S S +<+=-△△△△△△.于是结论成立. 17.1.21★★ 设a 、b 、c 为三角形三边长,则对任意实数x 、y 、z ,有22()()()()a x y x z b y z y x --+--2()()0c z x z y +--≥.解析 设x y p -=,y z q -=,则x z p q -=+, 原式222()()a p p q b qp c p q q =+-++2222222()()a p a b c pq c q f p =+-++=.它的判别式 22222222()4a b c q a c q ∆=-+-22222[()][()]a c b a c b q =+---0≤.于是 ()0f p ≥.17.1.22★ 已知图中窗框总材料一定,问何时窗的面积最大?(图中6个矩形全等)BAC解析 设AB x =,AC y =,则总材料为109πl x y x =++(l 为常数),面积为2π62S xy x =+.于是(10π)9l xy -+=,代入,得2220π336l S x x ⎛⎫=-+ ⎪⎝⎭. 这个二次函数在240πlx =+时取到极大值,此时x 、y 均有实际意义.取得窗的最大面积为221203πl +.17.1.23★★ ABCD 和EFGH 都是边长为1的正方形,且AB EF ∥.两个正方形重叠部分的面积为116,求两个正方形中心距离的最小值. 解析 如图,设ABCD 的中心为I ,EFGH 的中心为J ,过I 、J 分别作IK AB ∥,JK BC ∥,IK 、JK 交于K .又设两正方形重叠部分为矩形BMHN ,HM x =,HN y =,则116xy =,11122IK x x ⎛⎫=+-=- ⎪⎝⎭,同理1JK y =-,所以 222(1)(1)IJ x y =-+- 222()2x y x y =+-++21()2()2216x y x y =+-++-⋅ 277(1)88x y =+-+≥.所以,IJ .当x ,234y时等号成立.故所求的最小值为. 17.1.24★★ 在锐角ABC △的边BC 、CA 、AB 上各有一动点D 、E 、F ,求证:DEF △的周长达到最小当且仅当AD 、BE 、CF 为ABC △的三条高.解析 如图,设D 关于AB 、AC 的对称点分别为G 、H ,GD 与AB 交于M ,DH 与AC 交于N ,则DEF △的周长22sin GF FE EH GH MN AD BAC =++==∠≥≥42sin ABCS AD BAC BC'∠=⋅△ 2sin ABCS BAC R∠=△. HN CD BM GE FA这里AD '为ABC △的高,R 为ABC △的外接圆半径.又由对称性,除了AD BC ⊥外,BE 、CF 也分别必须垂直于AC 、AB 时方能达到.17.1.25★★ 直角三角形内切圆半径为1,求其面积的最小值.解析 设该直角三角形直角边长为a 、b ,则易知其内切圆半径为1(12a b +=,整理,得222(2)a b a b +-=+,或2222ab a b =+-≥,此即22)2≥.由于每条直角边均大于内切圆直径2,故2>,于是2+,直角三角形最小面积为3+此时该三角形为等腰直角三角形.17.1.26★★ 梯形ABCD 高为d ,上底AD a =,对角线交于P ,求用a 、d 表示APD △与BCP △面积之和的最小值.解析 如图,作EPF 与AD 、BC 垂直,垂足分别是E 、F .设BC x =,则PE PF d +=,PE AD aPF BC x==,解得ad PE a x =+,xdPF a x=+,于是2222111222APD BCP a d x d a x S S d a x a x a x ++=⋅+⋅=⋅+++△△. CF B P DEA设22a x y a x +=+,则220x yx a ay -+-=有解,故0∆≥,即224()y a ay -≥,即2y a +≥,y的最小值为1)a ,故最小面积为1)ad.此时1)x a =.17.1.27★★ 设D 是ABC △的边BC 的中点,E 、F 分别在边AB 、AC 上,DE DF ⊥,试比较BE CF +与EF 的大小关系.解析 如图,延长FD 至P 使DP DF =,由BD CD =,知BDP △≌(SAS)CDF △,故CF BP =.PCDB FEA又ED 垂直平分PF ,故EF PE =,易见EP BE BP <+,所以EF BE CF <+.17.1.28★★ 一凸六边形ABCDEF 每条边长均为1,求证:AD 、BE 、CF 中至少有一个2≤. 解析 如图,由于720A B C D E F ∠+∠+∠+∠+∠+∠=︒,不妨设240A F ∠+∠︒≤,作菱形ABGF ,则60GFE ∠︒≤,1FG FE ==,则GE 是FGE △最小边,1GE ≤,又1BG =,故2BE BG GE +≤≤.DCEGBFA17.1.29★★ 在正ABC △内,P 是一动点,求以P 在三边上的射影为顶点的三角形面积的最大值. 解析 如图,ABC △内一点P 在BC 、CA 、AB 的射影分别为D 、E 、F ,则CD B PEFADEF EPF FPD DPE S S S S =++△△△△1()sin1202PD PE PE PF PF PD =⋅+⋅+⋅︒)PD PE PE PF PF PD =⋅+⋅+⋅. 由熟知的不等式21()3ab bc ca a b c ++++≤,及PD PE PF ++为常数(ABC △的高h ),得2)DEF S PD PE PF ++△21144ABC S ==△. 等式成立,仅当PD PE PF ==,此时P 为ABC △的中心.17.1.30★★ 证明:四边形四边的平方和不小于对角线的平方和,等号成立仅当该四边形为平行四边形时.解析 如图,设BD 中点为E ,由中线长公式知CBEDA222224AB AD BD AE +=-, 222224BC CD BD CE +=-. 又由基本不等式,有22222()()AE CE AE CE AC ++≥≥,故用中线长公式代入,即得四边形四边平方和的不等式.等号成立时A 、E 、C 共线,且E 为AC 中点,即AC 、BD 互相平分,于是四边形ABCD 为一平行四边形.评注 又由托勒密不等式AD BC AB CD AC BD ⋅+⋅⋅≥,知有222()()()AD BC AB CD AC BD ++++≥,等号成立仅当四边形ABCD 为矩形.17.1.31★★ 设面积为1的锐角ABC △三条边分别是a 、b 、c ,动点P 在AC 上,P 在BC 上的射影是Q ,求BPQ △面积的最大值(用a 、b 、c 表示).解析 如图,作AR BC ⊥于R .因为cot BQ PQ C BC +=(常数),于是4cot BQ PQ C ⋅⋅=22()BC BQ CQ --.CQ R BPA当BR RC ≤,即AB AC ≤或c b ≤时,Q 可为BC 中点,此时BQ CQ =,从而BPQ S △可得最大值为2211sin tan 288cos a C BQ PQ BC C C ⋅⋅=⋅=22224cos 2()ABC a S a b C a b c ⋅==+-△. 当BR RC >,即c b >时,BQ CQ >.当Q 落在R 上,BQ CQ -达到最小,BQ PQ ⋅达到最大.此时BPQ S △的最大值为22222sin cos cos 22ABRc c a c b S B B B a a +-===△. 17.1.32★★ 设D 为定线段AB 上一定点,P 为动点,PD 的长度固定,求PA PB +之最大值. 解析 由斯图沃特定理222PA BD PB AD AD BD AB PD AB ⋅+⋅=⋅⋅+⋅,注意等式右端为定值.BD A P又由柯西不等式(或展开后移项配方)有22211()()PA BD PB AD PA PB BD AD ⎛⎫+⋅+⋅+ ⎪⎝⎭≥, 故2()PA PB +2()ABAD BD AB PD AB BD AD⋅⋅+⋅⋅≤222PD AB AB BD AD⋅=+⋅, 于是PA PB +的最大值是此时PA ADPB BD=,PD 为APB ∠的平分线. 17.1.33★★ 直角三角形ABC 的直角顶点C 在直角三角形DEF 的斜边DF 上,而E 在ABC △的斜边AB 上,如AC 、BC 、DE 、EF 分别等于10、15、12、12,求凸四边形ABFD 之面积的最大值. 解析 如图,由四边形面积公式,知1115022ABFD AECD EBFC S S S AC DE EF BC =+⋅+⋅=四边形四边形四边形≤.F BCEDA取等号须AC DE ⊥,EF BC ⊥.此时若将点C 位于DF 中点,则由DE 、EF 的值易知E 在ACB ∠平分线上,BC 垂直平分EF ,AC 垂直平分DE ,进而由AC 、BC 之值可知E 在AB 上,满足要求.所以ABFD S 四边形的最大值为150.17.1.34★★ 凸四边形一内点到四个顶点的距离分别是1、2、3、4,求这样的四边形的最大面积. 解析 设凸四边形ABCD 内有一点P ,{PA ,PB ,PC ,}{1PD =,2,3,4},则ABP BCP CDP DAP ABCD S S S S S =+++△△△△四边形11112222PA PB PB PC PC PD PD PA ⋅+⋅+⋅+⋅≤ 1()()2PA PC PB PD =++ 2125()82PA PC PB PD +++=≤. 等号成立,必须PA PC PB PD +=+,比如1PA =,4PC =,2PB =,3PD =,且A 、P 、C 共线,B 、P 、D 共线,AC BD ⊥,此时,5AC BD ==,ABCD S 四边形取最大值252.17.1.35★★ 面积为1的三角形ABC 中,三条边长a 、b 、c 满足a b c ≤≤,求a b +的最小值. 解析 如图,过C 作直线l AB ∥,又作BE l ⊥于E ,延长一倍至D ,连结CD .则a b AC CD AD +=+≥h BE =.ABlECD显然有22448c h ch +==≥,于是a b +≥仅当A 、C 、D 共线,即a b ==,且22c h ==时取等号,此时ABC △为等腰直角三角形. 17.1.36★★ 三角形两边长分别等于10和15,证明:这两个边的夹角的角平分线小于12. 解析 如图,不妨设15AB =,10AC =,AD 为角平分线.今在AB 上取一点E ,使ED AC ∥,则易知153255ED BD AB AC BC AB AC ====+, CDB EA故31065ED =⨯=,又由EAD DAC EDA ∠=∠=∠知6AE ED ==,于是12AD AE ED <+=. 显然12是最佳上界.17.1.37★★ 正三角形ABC 边长为1,M 、N 、P 分别在BC 、CA 、AB 上(含顶点),AP AN BP BM MC CN +=+=+,求MNP △的最大周长和最小周长. 解析 如图,易知1AP AN BP BM MC CN +=+=+=.CMB PTNS A由PN AP AN +≤等知MNP △的周长3AB BC CA ++=≤,达到最大值时M 、N 、P 分别落在ABC △的三个顶点上.又作BAC ∠的平分线AST ,PT 、NS 分别与AST 垂直于T 、S ,由于30PAS NAS ∠=∠=︒,1222AP AN PT SN PN =+=+≤,故12PN ≥,取等号时PN AS ⊥,且P 、N 是AB 、AC 的中点,同理有PM ,12MN ≥,故MNP △的周长32≥,取等号仅当M 、N 、P 为各边之中点时.17.1.38★★ 已知面积为T 的梯形ABCD 满足AB CD ∥,E 为边AB 上一点,且满足EC AD ∥,直线AC 、BD 、DE 交出的三角形面积为t .当t T 最大时,求ABCD. 解析 如图,设DE 与AC 交于M ,BD 与AC 交于N ,则MND S t =△.D设CD x =,()AB y x =≥,2ADCE ABCD S xS x y=+梯形,即2ADCExT S x y =+,2()DMC xTS x y =+△,又设AM CM p ==,MN q =,则y AB AN p q x CD CN p q +===-,解出q y x p y x -=+,即2()2()2()DMN y x xT y x xT t S y x x y x y --==⋅=+++△.于是要2()()y x xx y -+达到最大,即21(1)k k -+达最大,其中1y k x=≥.令1112S k ⎛⎫= ⎪+⎝⎭≤,则222111212122(12)(1)2228k S S S S S S k -+-⎛⎫=-=⋅⋅-⋅= ⎪+⎝⎭≤,仅当212S S =-时达到最大,此时3k =. 17.1.39★★ 已知ABC △的边AB 、AC 上分别有点D 、E ,F在DE 上,求证:ABC S △,并求等号成立的条件. 解析 如图,连结CD 、AF .设1AD k DB =,2AE k CE =,3DFk EF=,则CB EFDA23111111EFC EFC AFC ADC ABC AFC ADC ABC S S S S kS S S S k k k =⋅⋅=⋅⋅+++△△△△△△△△. 同理 321321111DFB ABC S k k S k k k =⋅⋅+++△△. 于是31222221231111(1)(1)(1)44464EFC DFB ABC S S k k k S k k k ⋅=⋅⋅⨯⨯=+++△△△≤. 开方即得结论.取等号时1231k k k ===,即DE 是中位线,F 为DE 中点.17.1.40★★ 已知Rt ABC △中,90C ∠=︒,CD AB ⊥于D ,B ∠的平分线交CD 于E ,交CA 于F ,G 是EF 的中点,连结CG ,设CFG △、BED △、BFC △的周长分别为1C 、2C 、3C .求123C C C +的最大值. ADGF EB C解析 易知1902CFB ABC BED CEF ∠=︒-∠=∠=∠,可得CE CF =,则CG 平分ECF ∠,而90ECF BCD ABC ∠=︒-∠=∠,所以FCG ECG CBF ABF ∠=∠=∠=∠,可推得CFG △∽BFC △∽BED △.因此13C CF C BF =,23C BEC BF=. 设CFx BF =,因为2BE BF GF =-,2CF GF BF =,所以 22121212BE GF CF x BF BF BF ⎛⎫=-⋅=-⋅=- ⎪⎝⎭. 因此,221212333199(12)2488C C C C CF BE x x x C C C BF BF +⎛⎫=+=+=+-=--+ ⎪⎝⎭≤,所以,当14x =,即4CF BF =时,123C C C +有最大值98. 17.1.41★★ BE 、CF 是ABC △的中线,且BE CF ⊥,设AC b =,()AB c c b =>. (1)求BC 之长(用b 、c 表示); (2)若ABC △存在,求bc的范围.解析 (1)设BE 交CF 于G ,则G 为ABC △的重心,故2GF GC =,2GE BG =,设GE x =,GF y =,因FGB △、EGC △、GBC △为直角三角形,于是有:CB EGFA22222222214,414,444.x y b y x c x y BC ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③由①+②得222215()()4x y b c +=+, 由③得 2221()5BC b c =+,即BC =(2)如果ABC △存在,则AB AC BC AB AC +>>-,于是有:0)c b c b c b ⎧+>⎪⎪⎨⎪-<>>⎪⎩从而2222221()(),51()().5c b b c c b b c ⎧+>+⎪⎪⎨⎪-<+⎪⎩④⑤不等式④恒成立;由不等式⑤得:241040b b c c ⎛⎫⎛⎫-+< ⎪ ⎪⎝⎭⎝⎭, 解之得:122bc<<. 由于0c b >>,结合不等式⑤的解,得:112bc<<. 所以,当112b c<<时,ABC △存在.17.1.42★★ ABC △中,点D 、E 、F 分别在BC 、CA 、AB 上,求证:1min(,,)4AFE BFD CED ABC S S S S △△△△≤,并求等号成立的条件. 解析 如图,222AFE BFD DCE ABC ABC ABC S S S AF AE BF BD CD CE AF BF BD CD CE EAS S S AB AC AB BC BC CA AB BC AC ⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅=⋅⋅⋅⋅⋅△△△△△△. CD B EFA易知221()4AF BF AF BF AB AF BF ⋅⋅=+≤,仅当F 为AB 中点时取等号,同理2BD CD BC ⋅,214CE EA AC ⋅≤,于是记min(,,)AFE BFD CED S S S S =△△△,则33164AFE BFD DCE ABCABC ABC ABC S S S S S S S S ⋅⋅△△△△△△△≤≤. 所以14ABC S S △≤,取等号时仅当D 、E 、F 为各边中点.17.1.43★★★ 已知:锐角ABC △中,角平分线AD 、中线BM 、高CH 交于一点P ,证明:45BAC ∠>︒.解析 如图,若45BAC ∠︒≤,则由于90ACB ∠<︒,得45ABC ∠>︒,故AC BC >,AH BH >.MQPCDBHN A作边AB 上的中线CN ,交BM 于Q ,易知N 在AH 内,于是12AH HP NQ AC CP QC =<=,故在直角三角形AHC 中,60BAC ∠>︒,矛盾,于是45BAC ∠>︒.17.1.44★★★ 证明托勒密定理和托勒密不等式:对于凸四边形ABCD ,AB CD AD BC AC BD ⋅+⋅⋅≥,等号成立仅当A 、B 、C 、D 共圆.解析 如图,今在AB 或延长线上取一点M ,在AD 或延长线上取一点N ,使2AB AM AC AD AN ⋅==⋅,连结MC 、NC 、MN .易知ABC △∽ACM △,故AC MC BC AB =⋅,同理,ACNC CD AD=⋅,又ABD △∽ANM △,故 2AM BD AC MN BD AD AD AB=⋅=⋅. 由于MN CM CN +≤,上几式代入,得2BD AC AC ACBC CD AD AB AB AD⋅⋅+⋅≤, 去分母,即得托勒密不等式.等式成立的条件是M 、C 、N 共线,此时180ABC ADC ACM ACN ∠+∠=∠+∠=︒,即A 、B 、C 、D 共圆.D NCMB A17.1.45★★★ 边长为1的正方形内部或边界上有n 个点,则必有两点距离3)n =,1(4)n =.解析 如图(a),先说明一个结果:ABC △中AD 为角平分线,AA '是AD 的反向延长,则由90A AB A AC ''∠=∠>︒,得A B AB '>,A C AC '>.(a)CD BAA'先考虑3n =的情形,假定P 、Q 、R 三点在正方形ABCD (边长1)内或边上.若P 在内,则可用QPR ∠角平分线反向延长,交到正方形某边或顶点为P ',这样P QR '△的每边都不小于PQR △的相应边.于是P 、Q 、R 三点最终都被“调”到正方形ABCD 的边或顶点上.再通过平移,必能使某点落在正方形的顶点上,其余点若在正方形内,再按上述办法继续调,最终三个顶点都落在正方形边界上,且其中至少有一个点的正方形的顶点.不妨设P 落在A 的位置,若Q 在AD 或AB 上,则1PQ <≤,于是由对称性,可设Q 在CD 上,而R 在BC 上.如图(b).若AQ -则(b)CRB QD A2DQ, 1CQ <,同理1CR <,RQ 综上所述结论成立.以下讨论4n =的情形.由于正方形内或边上最远两点距离是正方形对角线长度,故正方形ABCD (边长1)中四点P 、Q 、R 、S中任两点距离如四点构成凸四边形PQRS ,不妨设90S ∠︒≥,则2222PS SR PR +≤≤,所以PS 、SR 中有一个1≤.如四点中S 位于PQR △内或边上,不妨设12090PSR ∠︒>︒≥,同理得min(,)1PS PS <.17.1.46★★★ 设ABC △三边长分别为a 、b 、c ,D 、E 分别在AB 、AC 上,且DE 平分ABC △的面积,求DE 的最值(用a 、b 、c 表示).解析 如图,设CF 、BH 为中线.H E CBD F A设AD x =,AE y =,则由12ADE ABC S S =△△,有12xy bc =.又由余弦定理,222222cos ()2(1cos )()(1cos )DE x y xy A x y xy A x y bc A =+-=-+-=-+-.因(1cos )bc A -为常数,故DE 的大小取决于||x y -.由于xy 为常数,故x y -是x 的增函数.当||x y -取最大值,x 需最大或最小,x 最大为AB c =(这时y 取最小值2b ),最小为2c (这时y 取最大值b ).因此DE 的最大值是AB 、AC 中短边上的中线.比如当c b ≥时,DE 的最大值为. 记()f x x y =-,若()0f c ≥,02c f ⎛⎫⎪⎝⎭≤,则x y =可取到,于是当122cb ≤≤时,DE 的最小值为=当12c b <或2c b >时,比如2c b >时,x 总不会小于y ,此时2c x =时,||x y -最小,DE 就是CF ,即为AB 、AC 中长边上的中线,所以在2c b >的前提下,DE.2b c >时可以类推. 17.1.47★★ 在Rt ABC △中,D 、E 、F 分别为AB 、AC 、BC 的中点,H 为斜边AB 的高的垂足,G 是DH 的中点.设O 为AB 上的任一点,求证:EOF ∠取最大的角便是EGF ∠.F NB HGDOAEC解析 连结CH ,则HF 为Rt CHB △斜边BC 上的中线,故12HF BC FB ==.D 、E 分别为AB 、AC 中点,故DE ==∥12BC ,所以DE HF =,ADE ABC FHB ∠=∠=∠,从而EDG FHG ∠=∠.又DG GH =,故EDG △≌FHG △. 于是有EG GF =,EGD FGH ∠=∠.延长EG 至N ,使GN EG =,连结HN ,易知FGH △≌NGH △. 从而FH HN =.结合GF GN =知GH 为线段FN 的垂直平分线.设O 为AB 上任一异于G 的点,则OF ON =,且易知ON OF OE =>(若O 在G 的左边,OF OE >,O 在G 的右边,则OE OF >).从而 OFG ONG OEM ∠=∠∠≤,在OEM △与MGF △中,EMO ∠与FMG ∠为对顶角,于是有:EOF EOM MGF ∠=∠∠≤(等号当且仅当点O 与点G 重合时取到). 这就证明了EOF ∠取最大角时便是EGF ∠.17.1.48★★★ 设四边形四边依次为a 、b 、c 、d ,则其面积S其中2a b c dp +++=.取到最大值时,仅当四边形内接于圆. 解析 如图,连结AC 、BD ,交于O ,AOB θ∠=,则由四边形的余弦定理(见题13.1.7),得cbda O D CBA22222cos b d a c AC BD θ+--=⋅,又42sin ABCD S AC BD θ=⋅⋅四边形,两式平方后相加,得2222222164()ABCD S AC BD b d a c =⋅-+--四边形,即ABCD S 四边形 由托勒密不等式(参见题17.1.44),有AC BD ac bd ⋅+≤,故ABCD S 四边形==.由托勒密定理知,仅当ABCD 内接于圆时,面积取最大值.17.1.49★★★中,D 、E 分别是边BC 、AB 上的点,且123∠=∠=∠.如果ABC △、EBD △、ADC △的周长依次为m 、1m 、2m ,求证:1254m m m +≤. 321CD B EA解析因为23∠=∠,所以ED AC ∥,EBD △∽ABC △,1m BDm BC=;又13∠=∠,所以ADC △∽BAC △,2m AC m BC =,设AC b =,BC a =,由ADC △∽BAC △得22AC b DC BC a ==,222b a b BD a a a -=-=,这样,由2212m BD a b m BC a -==,2m AC b m BC a ==,可得2221221551244m m a b b b b b m a a a a a +-⎛⎫⎛⎫=+=-++=--+ ⎪ ⎪⎝⎭⎝⎭≤.当12b a =,即2BC AC =时,等号成立. 17.1.50★★★为ABC △内一点,过O 引三条边的平行线DE BC ∥,FG CA ∥,HI AB ∥.D 、E 、F 、G 、H ,I 为各边上的点(如图),记1S 为六边形DGHEFJ 的面积,2S 为ABC △的面积.证明:1223S S ≥.O E CFI BD G HA解析 可以从DGO △、OHE △,OIF △的面积与ABC △的面积关系入手.设BC a =,CA b =,AB c =,FI x =,EH y =,DG z =.易知OIF △∽HOE △∽GDO △∽ABC △,所以,z OD BI c a a ==,y OE FCb a a ==, 由此可得1x y z IF FC BIabca++++==. 由柯西不等式知:222222221133OIF OEH OGD S S S x y z x y z S a b c a b c ++⎛⎫=++++= ⎪⎝⎭△△△≥,从而223OHAG OEFC OIBD S S S S ++四边形四边形四边形≤.而四边形OHAG 、OECF 、OIBD 均为平行四边形,所以213AHG CEF BDI S S S S ++△△≤,即1223S S ≥.17.1.51★★★直角三角形ABC 中,1BC =,90C ∠=︒,30A ∠=︒,P 、Q 、R 分别在AB 、BC 、CA 上,求()max , , PQ QR RP 的最小值. 解析如图,猜想最小值是当PQR △为正三角形时取到.为求此值,不妨设图中的PQR △为正三角形.作QD AC ∥,S 在AB 上.当S 在AP 上时1302PSQ PRQ ∠=︒=∠,故S 、P ,Q 至R 等距,S 在BP 上亦然.P SARCQB于是SR RQ=,SR RQ=,RQ =,而显见SQ +=,故RQ 当37CQ =时,RQ. 若能证明对一般的动点P 、Q 、R ,有()max , , PQ QR RP 问题就解决了.用反证法,假定PQ ,QR,RP <设ABC △的费马点为F (图中未画出),则120BFA AFC CFB ∠=∠=∠=︒,设FA a =,FB b =,FC c =,则由余弦定理,知2222223 , 1. ,4 a c ac b c bc a b ab ++=++=⎧++=⎪⎨⎪⎩①②③①-②,得()()1b c a b c -++=, ②-③,得()()2a b a b c -++=,故a b c >>,22a b b c -=-,32a b c =-,代入②得2222331b c bc b c bc +-==++,于是224b bc =,2b c =,4a c =,代入上式得c,b,a =a b c ++=()12ABC APFR CRPQ BPFQ S S S S PR FA RQ FC PQ FB ==++⋅+⋅+⋅△≤)a b c <++=,矛盾! 因此()max , , PQ QR RP. 评注PQR △实为费马点的等角共扼点的垂足三角形.a b c ++其实也等于(CD =,ABD △为向外作的正三角形.17.1.52★★★证明:若a 、b 、c 能构成三角形的三边长,则1a b +、1b c +、1c a+也能.又若a 、b 、c 构成锐角三角形三边长,则1a b +、1b c +、1c a+呢? 解析 不妨设a ≥b ≥c >0,问题归结为:若b c a +>,则111a b c a b c+>+++.证明如下: 111122a b c a b c b c +>+++++ 1112222b c b c b c>+=+++.当a 、b 、c 构成锐角三角形时,1a b +、1b c +、1c a+也构成锐角三角形,证明如下(仍设a ≥b ≥c >0):由于()()()()22112c a a b c a a b +++++≥,下证()()()221a b c a b c >+++即可,此等价于()222b c a bc ab ca +>+++,由于()2222222b c b c bc a bc a bc+=++>+>+,又()()()()2b c b c b c a b c ab ac +=++>+=+,两式相加即得结论.17.1.53★★★点D 、E 、F 分别在BC 、CA 、AB 上,若分别记AEF S △、BFD S △、CED S △为1S 、2S 、3S ,证明:DEF S △≥当且仅当AD 、BE 、CF 共点时等号成立.D CEFA解析 设1AF BF λ=,2BD CD λ=,3CEAEλ=,则 ()()111311ABC S S λλλ=++△, ()()222111ABC S S λλλ=++△, ()()332311ABC S S λλλ=++△,所以123DEF ABC S S S S S =---△△()()()()()()()()()123213213123111111111ABCS λλλλλλλλλλλλ⎡⎤=⋅+++-+-+-+⎣⎦+++△ ()()()1231231111ABCSλλλλλλ+=+++△. 又有()()()1231232322123111ABCS S S S λλλλλλ=+++△, 故 223123123DEF ABC DEF ABCABC S S S S S S S S S S S ⎛⎫⋅=⋅⎪⎝⎭△△△△△()212312314λλλλλλ+=≥,于是命题得证.仅当1231λλλ=时取等号,由塞瓦逆定理知,此时必有AD 、BE 、CF 共点. 17.1.54★★★已知定角()XOY θ=∠内有一定点P ,动直线l 过P ,交XOY ∠两边于M 、N ,求OM ON +之最小值(假定POX α=∠,POY β=∠,PO d =).解析 如图,由面积得MON MOP NOP S S S =+△△△,即sin sin sin OM ON OM OP ON OP θαβ⋅⋅=⋅⋅+⋅⋅,此式可化为sin sin sin ON OM dαβθ+=. βαPY NOKMX用柯西不等式(或展开后用平均不等式),可得()()sin sin sin OM ON OM ON d ON OM θαβ⎛⎫+=++ ⎪⎝⎭2≥,故OM ON +的最小值为2sin dθ.等号成立,仅当OM ON =.其与sin sin sin ON OM d αβθ+=联立,可解得)sin sin dOM βθ=,)sin sin dON αθ=.又作PK OY ∥,与OX 交于K ,则sin sin dOK βθ=⋅,OK OM <,这样的M 、N 的确存在. 17.1.55★★★★已知锐角三角形ABC ,D 、E 、F 分别是BC 、CA 、AB 上的动点,求证:222DE EF FD ++达到最小时,满足GD BC ⊥、GE AC ⊥、GF AB ⊥,及等价的AB AC BCGF GE GD==,此处G 为DEF △重心,并用ABC △三边及面积表示这个最小值.解析 如图,先设E 、F 固定,M 为EF 中点,则2222122DE DF MD EF +=+.当MD 达最小时,应有MD BC ⊥,如对三边作处理,便有GD BC ⊥、GE AC ⊥、GF AB ⊥,此时GFD GED S S =△△,sin sin FG FGD GE EGD ⋅=⋅∠∠,故sin sin FG B GE C ⋅=⋅,sin sin FG GEC B=,同理此值为sin GD A ,此即AB AC BCGF GE GD==.CD B GE MFA下证此时的DEF △确实达到三边之平方和最小.先求此值,设GF k AB =⋅,GE k AC =⋅,GD k BC =⋅,则()2222ABC k AB BC CA S ++=△. 又2222cos DE GE GD GE GD C =++⋅⋅()2222cos k AC BC AC BC C =++⋅()222222k AC BC AB =+-,同理有另两式,加之,得()22222223DE EF FD k AB BC CA ++=++222212ABCS AB BC CA =++△. 下证对于一般的DEF △,有()()222222DEEF FD AB BC CA ++++212ABC S △≥.找到DEF △重心G ,由中线长,易知有()()222222DEEF FD AB BC CA ++++()()2222223FG GD GE AB BC CA =++++()23FG AB GD BC GE CA ⋅+⋅+⋅≥212ABC S △≥.评注 这里用到柯西不等式,不难得出等号成立之条件.此题还包含了另一个问题:三角形内求一点至三边距离平方和最小.17.1.56★★★已知ABC △,D 、E 分别在BC 、AB 上,AD 、CE 交于O ,记ACO △、EDO △、BED △的面积分别是1S 、2S 、3S ,求3S 的最小值(假定1s 、2s 已知,用1S 、2S 表示之). 解析 如图,若设AEO S S =△,ODC S S =△′,则由简单的比例知S S ⋅′12S S =⋅,又O CDBEA12AEC ACDEDC AED S S S AO CO AO CO S EO DO DO EO S S ⋅==⋅=⋅⋅△△△△ AEC ACD AED EDC S S BC ABS S BD BE=⋅=⋅△△△△ 12333ABC S S S S S S S S ++++'==△3231S =+,故3S最小值为S 达到此值时S S =′,即ED AC ∥.17.1.57★★★已知ABC △三边分别为a 、b 、c ,其中b 、c 确定,D 为BC 中点,ADC θ=∠,求sin θ的最大值(a 不固定,用b 、c 表示).θCDBA解析 易知2222cos a b c bc A =+-,()222212cos 4AD l b c bc A ==++(延长AD 一倍至E 并连CE 即知).于是()22222sin 4sin ABC bc A S a l θ==△,()2222222222sin sin 1cos 4b c Ab c b c A θ=+-下证此式()222224b c bc+≤.这等价于()()22222222224cos sin b c b c A b c A +-+≥,这可由222b c bc +≥及2cos 0A ≥推出,故sin θ的最大值为222bcb c +,仅当90BAC =∠゜或AB AC =时成立.17.1.58★★★★(费马光行最速原理)光线由A 到B ,在介质分界面l 上折射.设C 为l 上一点,直线AC 、BC 与l 所夹锐角分别为1θ、2θ,又设C ′是l 上另一点.求证:当1v 、2v (光线在两种不同介质中的速度)满足θ2θ1B 1B DCC 'ElA F1122cos cos v v θθ= 时必有1212AC BC AC BCv v v v ''+>+. 解析 作点B 关于直线l 的对称点1B ,则有1B C BC =,1B C ′BC =′, 12DCB DCB θ==∠∠.过A 作CA 的垂线,过1B 作1B C 的垂线,两垂线交于点F ,且与l 分别交于E 、D .在DEF △中,EF C ⋅′A DF C +⋅′()12C EF C FD B S S ''>+△△()22DEF CEF CDF S S S ==+△△△1EF CA DF CB =⋅+⋅.由正弦定理,得2211cos sin sin cos v EF FDE DF FED v θθ===∠∠, 故 2v AC ⋅′11v B C +⋅′211v AC v B C >⋅+⋅, 即111212B C B CAC AC v v v v ''+>+,得 1212AC BC AC BCv v v v ''+>+. 17.1.59★★★★ABC△内(或边界上)有一点D ,180ADC ABC +=∠∠゜,CD AB a ==,AC b =.a <b <2a ,求ABC ACD S S -△△的最大值(用a 、b 表示,需分情况讨论).解析 易知90ADC >∠゜.如图,延长AD 至P ,使APC ABC CDP ==∠∠∠,则CP CD AB ==,且A 、B 、P 、C 共圆,于是四边形ABPC 为等腰梯形,因此ABC ACD APC ACD DCP S S S S S -=-=△△△△△.BCPEDA问题归结为求DCP S △的最大值.当然是希望90DCP =∠゜,这样212DCP S a =△.下面来研究DCP ∠的可取范围,设DCP θ=∠.由于AE CE =,DAC DCA ∠≥∠,因此CD AD ≥. 在ACP△中,由等腰三角形CDP知22b a AD AP -=⋅(见题9.2.3)2222sin 2AD AD DP CD CD DP a a a θ=+⋅+⋅=+⋅≤,即221sin 22b a θ-≤.因为b <2a ,故左式<1,θ总有解,下面讨论之.(1)当1ba<,θ可取90゜,此时的最大面积正是212a ; (2)当2ba <时,取22sin 122b a θ=-,则22sin 22b PD a a a θ==-,DCP S △得最大值为2sin cos 22a θθ=.17.1.60★★★★已知:定角60O =∠゜,内有一定点P ,OP 平分O ∠,OP d =,过P 作一动直线交O ∠两边于A 、B (OAB ∠、90OBA ∠≤゜),过A 、B 分别作OA 、OB 的垂线交于Q .求四边形AOBQ 面积的最大值,并刻画此时AB 的位置.解析 不妨设OA a =,OB b =,作AD OB ⊥于D ,则cos602a BDb a b =-=-゜,2cos ab ABO AB -=∠,同理2cos b a OAB AB-=∠. 由正弦定理,sin sin BQ ABBAQ Q=∠,或cos sin 60BQ ABOAB =∠゜,故2b BQ a ⎫-⎪⎭,2215222422ABQ a b a b S BD BQ b a ab ⎫⎫⎛⎫=⋅⋅=--=--⎪⎪⎪⎝⎭⎝⎭⎝⎭△,又OAB S =△,故)224OBQA S ab a b =--. 下面求出a 与b 之间的关系.由AOB AOP BOP S S S =+△△△,得sin30sin30sin60ad bd ab +=゜゜゜,不妨设d 于是a b ab+=.由此得ab ≥4ab ≥.又()()()()22222466938ab a b ab a b ab ab ab -+=-+=-=--≤.于是当2a b ==时,OBQA S 达到最大值(一般情况下.当ab =时达到最大值2),此时AB OP ⊥.17.1.61★★★★ABC △的边BC 内有一点D ,AD BC ⊥,又在BC 上找一点E ,使BE CD =(E 比D 靠近B ),过E 任作一直线,交AB 于F ,交AC 的延长线于G ,求证:BC FG <. 解析1 如图(a ),连结BG 、DG ,显然ABC ∠、ACB ∠均为锐角.由梅氏定理,有1BA FG ECAF GE CB⋅⋅=,于是欲证结论变成求证1BA EC AF GE ⋅<,或BF GE CEAF CE-<. 作GH BC⊥于H,连结AE、AH,注意左边为BEG DCG DHG AHG AEG AEG AEG AEG S S S S CH EH CE GE CES S S S CE CE CE--=<===<△△△△△△△△. 于是结论成立.(b)(a)ME D CGNBFAHGC DE BF A解析2 如图(b ),作FM 、GN 与BC 垂直,垂足为M 、N .由梅氏定理知1AG CE BFGC BE AF⋅⋅=, 用AG AC AF AB >及CE BDBE CD=代入,得 1AC BD BF AB CD GC ⋅⋅<,或BF CGBD CD AB AC⋅<⋅, 如图(b )所示,此即BM CN <,于是BC MN FG <<.17.1.62★★★★已知非钝角三角形ABC ,BC 上的一些点,以ABC △中(包括边界和内部)的A 为最远,这些点构成的线段长为a l ,同理定义b l 、c l ,求证:()14a b c l l l a b c ++>++,其中BC a =,CA b =,AB c =.解析 不妨设a ≥c ≥b .首先证明一个结果:设P 为ABC △内部或边界上任一点,则ABC △中离P 最远的点是ABC △的顶点.为证明这一点,只需连结PA 、PB 、PC ,不妨设任一点Q 在APC △内,如图(a ),延长PQ 与AC 交于R ,ARP ∠或90PRC ∠≥゜,故()max ,PA PC PR PQ >≥,结论成立.于是对ABC 内任一点,只要比较它与A 、B 、C 的距离即可.(b)(a)ECND M B FLABPC Q R A如图(b ),由BC ≥AB ≥AC ,作BC 、CA 、AB 的中垂线LD 、EM 、FN ,其中D 、E 、F 分别是三边中点,M 、N 在BC 上,L 在AB 上. 易知a l MN =,b l AC =,c l BL =.于是。

相关主题