当前位置:文档之家› 材料力学习题册答案-第9章-压杆稳定

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。

在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。

A 、弯曲变形消失,恢复直线形状;B 、弯曲变形减少,不能恢复直线形状;C 、微弯状态不变;D 、弯曲变形继续增大。

2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C )A 、完全消失B 、有所缓和C 、保持不变D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。

A 、长度B 、横截面尺寸C 、临界应力D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。

A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。

答案:( a )6、两端铰支的圆截面压杆,长1m ,直径50mm 。

其柔度为 ( C )A.60;B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。

8、细长压杆的( A ),则其临界应力σ越大。

A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤ PEπσ B 、λ≤sEπσC 、λ≥ P Eπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。

A 、细长杆的σe 值与杆的材料无关;B 、中长杆的σe 值与杆的柔度无关;C 、中长杆的σe 值与杆的材料无关;D 、粗短杆的σe 值与杆的柔度无关; 13、细长杆承受轴向压力P 的作用,其临界压力与( C )无关。

A 、杆的材质B 、杆的长度C 、杆承受压力的大小D 、杆的横截面形状和尺寸二、计算题1、 有一长l =300 mm ,截面宽b =6 mm 、高h =10 mm 的压杆。

两端铰接,压杆材料为Q235钢,E =200 GPa ,试计算压杆的临界应力和临界力。

解:(1)求惯性半径i对于矩形截面,如果失稳必在刚度较小的平面内产生,故应求最小惯性半径mm 732.1126121123minmin ===⨯==b bhhb AI i(2)求柔度λλ=μl /i ,μ=1,故 λ=1×300/1.732=519>λp =100 (3)用欧拉公式计算临界应力()MPa 8.652.1731020ππ24222cr =⨯==λσE(4)计算临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2、一根两端铰支钢杆,所受最大压力KN P 8.47=。

其直径mm d 45=,长度mm l 703=。

钢材的E =210GPa ,p σ=280MPa ,2.432=λ。

计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=461-2.568λ(MPa)。

试 (1)判断此压杆的类型;(2)求此杆的临界压力;解:(1) 1=μ 8621==PE σπλ 5.624===d li l μμλ由于12λλλ<<,是中柔度杆。

(2)cr σ =461-2.568λMPaKN A P cr cr 478==σ3、活塞杆(可看成是一端固定、一端自由),用硅钢制成,其直径d=40mm ,外伸部分的最大长度l=1m ,弹性模量E=210Gpa,1001=λ。

试(1)判断此压杆的类型;(2)确定活塞杆的临界载荷。

解:看成是一端固定、一端自由。

此时2=μ,而,所以,。

故属于大柔度杆-用大柔度杆临界应力公式计算。

4、托架如图所示,在横杆端点D 处受到P=30kN 的力作用。

已知斜撑杆AB 两端柱形约束(柱形较销钉垂直于托架平面),为空心圆截面,外径D=50mm 、内径d=36mm ,材料为A3钢,E=210GPa 、p σ=200MPa 、s σ=235MPa 、a=304MPa 、b=1.12MPa 。

若稳定安全系数n w =2,试校杆AB 的稳定性。

1.5m0.5mC ABD30o解 应用平衡条件可有∑=0A M ,107N 5.05.11040230sin 5.123=⨯⨯⨯==οP N BD kN 2cm 837.32=A ,4cm 144=y I ,cm 04.2=y i ,4cm 1910=x Icm 64.7=x iA3钢的4.99=P λ,1.57=S λ压杆BA 的柔度S x x i l λμλ<=⨯==7.220764.030cos 5.11οPyy i lλμλ<=⨯==9.820209.030cos 5.11ο因x λ、y λ均小于P λ,所以应当用经验公式计算临界载荷()[]N 109.8212.130400329.0)(6⨯⨯-⨯=-==y cr cr b a A A P λσ695=kN压杆的工作安全系数55.6107695=>==st n n BA 压杆的工作安全系数小于规定的稳定安全系数,故可以安全工作。

5、 如图所示的结构中,梁AB 为No.14普通热轧工字钢,CD 为圆截面直杆,其直径为d =20mm ,二者材料均为Q235钢。

结构受力如图所示,A 、C 、D 三处均为球铰约束。

若已知p F =25kN ,1l =1.25m ,2l =0.55m ,s σ=235MPa 。

强度安全因数s n =1.45,稳定安全因数st []n =1.8。

试校核此结构是否安全。

解:在给定的结构中共有两个构件:梁AB ,承受拉伸与弯曲的组合作用,属于强度问题;杆CD ,承受压缩荷载,属稳定问题。

现分别校核如下。

(1) 大梁AB 的强度校核。

大梁AB 在截面C 处的弯矩最大,该处横截面为危险截面,其上的弯矩和轴力分别为3max p 1(sin 30)(25100.5) 1.25M F l ==⨯⨯⨯° 315.6310(N m)15.63(kN m)=⨯⋅=⋅3N p cos302510cos30F F ==⨯⨯°°321.6510(N)21.65(kN)=⨯=由型钢表查得14号普通热轧工字钢的333222102cm 10210mm 21.5cm 21.510mmz W A ==⨯==⨯由此得到33max N max392415.631021.6510102101021.51010z M F W A σ--⨯⨯=+=+⨯⨯⨯⨯ 6163.210(Pa)163.2(MPa)=⨯= Q235钢的许用应力为 ss235[]162(MPa)1.45n σσ=== max σ略大于[]σ,但max ([])100%[]0.7%5%σσσ-⨯=<,工程上仍认为是安全的。

(2) 校核压杆CD 的稳定性。

由平衡方程求得压杆CD 的轴向压力为N p p 2sin 3025(kN)CD F F F ===° 因为是圆截面杆,故惯性半径为 5(mm)4I di A === 又因为两端为球铰约束 1.0μ=,所以p 31.00.55110101510li μλλ-⨯===>=⨯这表明,压杆CD 为细长杆,故需采用式(9-7)计算其临界应力,有 222932Pcrcr 2220610(2010)41104Ed F A σλ-πππ⨯⨯π⨯⨯==⨯=⨯352.810(N)52.8(kN)=⨯=于是,压杆的工作安全因数为cr Pcr w st w N 52.82.11[] 1.825CD F n n F σσ====>=这一结果说明,压杆的稳定性是安全的。

上述两项计算结果表明,整个结构的强度和稳定性都是安全的。

6、一强度等级为TC13的圆松木,长6m ,中径为300mm ,其强度许用应力为10MPa 。

现将圆木用来当作起重机用的扒杆,试计算圆木所能承受的许可压力值。

解:在图示平面内,若扒杆在轴向压力的作用下失稳,则杆的轴线将弯成半个正弦波,长度系数可取为1μ=。

于是,其柔度为168010.34liμλ⨯===⨯ 根据80λ=,求得木压杆的稳定因数为22110.39880116565ϕλ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭从而可得圆木所能承受的许可压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN)如果扒杆的上端在垂直于纸面的方向并无任何约束,则杆在垂直于纸面的平面内失稳时,只能视为下端固定而上端自由,即2μ=。

于是有2616010.34liμλ⨯===⨯ 求得22280028000.109160ϕλ=== 62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN)显然,圆木作为扒杆使用时,所能承受的许可压力应为77 kN ,而不是281.3 kN 。

7、 如图所示,一端固定另一端自由的细长压杆,其杆长l = 2m ,截面形状为矩形,b = 20 mm 、h = 45 mm ,材料的弹性模量E = 200GPa 。

试计算该压杆的临界力。

若把截面改为b = h =30 mm ,而保持长度不变,则该压杆的临界力又为多大? 解:(一)、当b=20mm 、h=45mm 时 (1)计算压杆的柔度692.82012liμλ===>123c λ=(所以是大柔度杆,可应用欧拉公式)(2)计算截面的惯性矩由前述可知,该压杆必在xy 平面内失稳,故计算惯性矩4433100.312204512mm hb I y ⨯=⨯== (3)计算临界力μ = 2,因此临界力为 ()()kN N l EI Fcr 70.337012210310200289222==⨯⨯⨯⨯⨯==-πμπ(二)、当截面改为b = h = 30mm 时 (1)计算压杆的柔度461.93012liμλ===>123c λ=(所以是大柔度杆,可应用欧拉公式)(2)计算截面的惯性矩44431075.6123012mm bh I I z y ⨯====代入欧拉公式,可得()()N l EI F cr 8330221075.610200289222=⨯⨯⨯⨯⨯==-πμπ 从以上两种情况分析,其横截面面积相等,支承条件也相同,但是,计算得到的临界力后者大于前者。

相关主题