第七章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dyy g )()(=.(2). 方程的解法:分离变量法 (3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:⎰⎰=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法(1).方程的形式:⎪⎭⎫ ⎝⎛=x y dx dy ϕ. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=; ②.代入原方程得:)(u dxdux u ϕ=+;③.分离变量后求解,即解方程xdxu u du =-)(ϕ;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy.(2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为⎰-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设⎰-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数, 从而有 ⎰---'=⎰x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'⎰-⎰--⎰,整理得 ⎰='xd x P x Q x u )(e )()(,两端积分得 C dx ex Q x u xd x P +=⎰⎰)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=⎰⎰⎰-dx e x Q e Ce x d x P x d x P x d x P ⎰⎰⎰-⎰-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.第八章:空间解析几何与向量代数一、向量 ),,(),,,(),,,(c c c b b b a a a z y x c z y x b z y x a ===1.向量),,(a a a z y x a = 与),,(b b b z y x b = 的数量积:b a b b b a z z y x x x b a b a ++==⋅ϕcos; 2. 向量),,(a a a z y x a = 与),,(b b b z y x b = 的向量积:bbb a aa z y x z y x k ji b a=⨯.ϕsin b a b a=⨯的几何意义为以b a ,为邻边的平行四边形的面积.3. 向量),,(z y x r=的方向余弦:222222222cos ,cos ,cos zy x y zy x y zy x x ++=++=++=γβα,1cos cos cos 222=++γβα;2sin sin sin 222=++γβα. 4. 向量),,(a a a z y x a =与),,(b b b z y x b =垂直的判定:00=++⇔=⋅⇔⊥b a b b b a z z y x x x b a b a.5. 向量),,(a a a z y x a =与),,(b b b z y x b =平行的判定:k z z y x x x k b k a b a b a ba b b b a ===⇔≠=⇔=⨯⇔0,0//.6. 三向量共面的判定: ⇒=++0 c n b m a k c b a,,共面.7. 向量),,(a a a z y x a = 在),,(b b b z y x b = 上的投影:222Pr aa a ba b b b a a z y x z z y x x x a b a b j ++++=⋅= .二、平面1. 过点),,(000z y x P ,以),,(C B A n=为法向量的平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A .2. 以向量),,(C B A n=为法向量的平面的一般式方程:0=+++D Cz By Ax .3. 点),,(111z y x M 到平面0=+++D Cz By Ax 的距离222111CB A D cz By Ax d +++++=错误!未找到引用源。
.4. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏平行的判定:212121212121////D D C C B B A A n n ≠==⇔⇔∏∏.5. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏垂直的判定:021********=++⇔⊥⇔⊥C C B B A A n n∏∏.6. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏的夹角:222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ三、直线1. 过点),,(000z y x P ,以),,(p n m s=为方向向量的直线的点向式(对称式、标准)方程:pz z n y y m x x 000-=-=-.2. 过点),,(000z y x P ,以),,(p n m s = 为方向向量的直线的参数式方程:⎪⎩⎪⎨⎧=-=-=-tpz z tn y y tm x x 000.3. 直线的一般式方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .方向向量为21n n s⨯=.4.直线方程之间的转化: i) 点向式↔参数式ii) 一般式→点向式 第一步:找点 第二步:找方向向量21n n s⨯=5. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-平行的判定:2121212121////p pn n m m s s L L ==⇔⇔ .6. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-垂直的判定:021********=++⇔⊥⇔⊥p p n n m m s s L L.7. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-的夹角:222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ.8. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏垂直的判定: CnB m A l N S L ==⇔⇔⊥ //∏.9. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏平行的判定: 0//=++⇔⊥⇔Cn Bm Al N S L∏.10. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏的夹角:222222sin pn m C B A Cp Bn Am ++⋅++++=ϕ.11.点),,(000z y x P 到直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A的距离:d =,其中M 是直线上任意一点,21n n s⨯=.四、曲线、曲面 1.yoz 平面上的曲线C :0),(=z y f 绕z 轴旋转一周所得的旋转曲面为S :0),(22=+±z y x f .2.空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 关于xoy 平面上的投影柱面方程为:0),(=y x H ;在xoy 平面上的投影曲线为C :⎩⎨⎧==00),(z y x H .第九章:多元函数微分法及其应用一、平面点集1.内点一定在点集内,但点集内的点未必是点集的内点,还有孤立点;2.聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点;3.开集和闭集内的所有点都是聚点. 二、二元函数的极限、连续性的相关知识点 1.二元函数),(y x f 在),(00y x 点的二重极限:A y x f y x y x =→),(lim ),(),(00.2.二元函数),(y x f 在),(00y x 点的连续性:),(),(lim00),(),(00y x f y x f y x y x =→.3.二元初等函数在其定义区域内连续. 二、二元函数的偏导数的相关知识点 1.函数),(y x f z= 对自变量y x ,的偏导数:x z ∂∂及yz∂∂错误!未找到引用源。
. 2. 函数),(y x f z = 对自变量y x ,的二阶偏导数:22x z∂∂、22yz∂∂错误!未找到引用源。
、y x z ∂∂∂2、x y z ∂∂∂2 注:若二阶混合偏导数y x z ∂∂∂2与xy z∂∂∂2连续,则二者相等.三、二元函数的全微分:dy yz dx x z dz∂∂+∂∂=四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系 1. 函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系. 2. 偏导数存在性与全微分存在性的关系:全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在) 偏导数连续,全微分存在,反之未必. 3. 连续性与全微分存在性的关系:全微分存在,函数一定连续;(函数不连续,全微分一定不存在) 函数连续,全微分未必存在. 五、二元复合函数的偏(全)导数1.中间变量为两个,自变量为一个的复合函数的全导数:))(),((),(),(),,(t t f z t v t u v u f z ψϕψϕ====, dtdvv z dt du u z dt dz ∂∂+∂∂= 2.中间变量为两个,自变量为两个的复合函数的偏导数:)),(),,((),,(),,(),,(y x y x f z y x v y x u v u f z ψϕψϕ====,xv v z x u u z y z x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂+∂∂∂∂=∂∂, 六、隐函数微分法1.由一个方程确定的隐函数微分法:0),,(=z y x F 确定隐函数),(y x f z=,直接对方程左右两端关于自变量求偏导数,即0=∂∂∂∂+∂∂+∂∂xzz F dx dy y F dx dx x F ,即001=∂∂∂∂+⋅∂∂+⋅∂∂x z z F y F x F ,解得''zx F F x z-=∂∂2.由方程组确定的隐函数组微分法:⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 确定隐函数⎩⎨⎧==),(),(y x v v y x u u ,直接对方程组左右两端关于自变量求偏导数,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂+∂∂00x v v G x u u G dx dy y G dx dx x G x vv F x u u F dx dy y F dx dx x F ,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂00xv v G x u u G x G xvv F x u u F x F ,可以解出x v x u ∂∂∂∂,. 七、偏导数的几何应用1.曲线的切线方程和法平面方程1). 以参数式方程⎪⎩⎪⎨⎧===)(),(),(t z t y t x χψϕ表示的曲线在0t t =对应的点),,(000z y x M 的切线方程:)()()(0'00'00'0t z z t y y t x x χψϕ-=-=-法平面方程:0))(())(())((00'00'00'=-+-+-z z t y y t x x t χψϕ2). 以一般式方程⎩⎨⎧==0),,(0),,(z y x G z y x F 表示的曲线在点),,(000z y x M 的切线和法平面方程:先用方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数组⎩⎨⎧==)()(x g z x f y 微分法求出dxdz dx dy ,,然后得到切线的方向向量⎪⎭⎫ ⎝⎛===00,,1x x x x dx dz dxdy n切线方程:)()(10'00'00x g zz x f y y x x -=-=- 法平面方程:0))(())((00'00'0=-+-+-z z x g y y x f x x2.曲面的切平面方程和法线方程1).以一般式方程0),,(=z y x F 表示的曲面在点),,(000z y x M 的切平面和法线方程: 切平面线方程:0))(())(())((0'0'0'=-+-+-z z M F y y M F x x M F z y x法方程:)()()(''0'0M F z z M F y y M F x x z x x -=-=- 2).以特殊式方程),(y x f z =表示的曲面在点),,(000z y x M 的切平面和法线方程:令0),(),,(=-=z y x f z y x F ,有曲面在点),,(000z y x M 的切平面的法向量)1),,(),,(())(),(),((00'00''''-==y x f y x f M F M F M F N y x z y x切平面线方程:0)())(,())(,(0000'000'=---+-z z y y y x f x x y x f y x法方程:1),(),(000'000'0--=-=-z z y x f y y y x f x x x x .3.方向导数与梯度:1). 方向导数:ρ∆∆ρ).(),(lim 0y x f y y x x f l f -++=∂∂→ 2). 方向导数存在条件:可微分函数),(y x f z =在一点沿任意方向l 的方向导数都存在,并且βαcos cos yzx z l f ∂∂+∂∂=∂∂,其中βαcos ,cos 是方向l 的方向余弦.3). 梯度:函数),,(z y x f 在点),,(000z y x M 处的梯度k z y x f j z y x f i z y x f z y x f grad z y x ),,(),,(),,(),,(000000000000++=( ).4). 方向导数与梯度的关系: ①.函数),,(z y x f 在点),,(000z y x M 处增加最快的方向是其梯度),,(000z y x f grad 的方向,减小最快的方向是),,(000z y x f grad -的方向.②. 函数),,(z y x f 在点),,(000z y x M),,(000z y x .八、极值、条件极值 1. 函数),(y x f z =的极值点和驻点的关系:函数),(y x f z =的极值在其驻点或不可偏导点取得.2.求函数极值的步骤:(1).对函数),(y x f z =求偏导数,解方程组⎪⎩⎪⎨⎧==0),(0),(''y x f y x f y x ,得所有驻点),(i i y x .(2).对每一个驻点),(i i y x ,求出二阶偏导数的值),(),,(),,(''''''i i yy i i xy i i xx y x f C y x f B y x f A ===.(3).计算AC B -2,根据AC B -2以及A 的符号判定),(i i y x f 是否是极值:若0,02><-A AC B ,则),(i i y x f 是极小值; 若0,02<<-A AC B ,则),(i i y x f 是极大值; 若,02>-AC B ,则),(i i y x f 不是极小值;若,02=-AC B,则),(i i y x f 是否是极值不能判定,需其他方法验证.3.求函数),(y x f z =在附加条件0),(=y x ϕ下的条件极值的方法:做拉格朗日函数),(),(),(y x y x f y x F λϕ+=,对自变量y x ,求偏导,建立方程组⎪⎩⎪⎨⎧=+==+=0),(),(),(0),(),(),(''''''y x y x f y x F y x y x f y x F y y y x x x λϕλϕ 与附加条件联立的方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(''''''y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ,解出的y x ,就是函数),(y x f z =的可能极值点.第十章:重积分一、二重积分的相关性质 1.有界闭区域上的连续函数),(y x f 在该区域D 上二重积分⎰⎰Dd y x f σ),(存在;2.若函数),(y x f 在有界闭区域D 上二重积分存在⎰⎰Dd y x f σ),(,则),(y x f 在该区域上有界;3.中值性:若函数),(y x f 在有界闭区域D 上连续,区域D 的面积为σ,则在D 上至少存在一点),(ηξ,使得σσ⋅=⎰⎰),(),(y x f d y x f D.4.σσ=⎰⎰Dd 1,区域D 的面积为σ.二、二重积分的计算1.利用平面直角坐标计算二重积分 1).先对y 后对x 积分,由于积分区域:D b x a <<;)()(21x y x ϕϕ<<,有⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.2).先对x 后对y 积分,由于积分区域:D d y c <<;)()(21y x y ψψ<<,有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.3).积分换序:⎰⎰⎰⎰⎰⎰==dcy y Dbax x dx y x f dy d y x f dy y x f dx )()()()(2121),(),(),(ψψϕϕσ.2.利用极坐标计算二重积分令⎩⎨⎧==θρθρsin cos y x ,由于积分区域:D βθα<<;)()(21θρθρ<<x ,有⎰⎰⎰⎰=βαθρθρρρθρθρθσ)()(21)sin ,cos (),(d f d d y x f D.三、三重积分的相关性质:V dV =⎰⎰⎰Ω1,区域Ω的体积为V . 四、三重积分的计算1.利用直角坐标计算三重积分 积分区域V :b x a<<;)()(21x y y x y <<;),(),(21y x z z y x z <<,有⎰⎰⎰⎰⎰⎰=),(),()()(2121),,(),,(y x z y x z bax y x y dz z y x f dy dx dV x y x f Ω第十一章:曲线积分 曲面积分一、曲线积分的计算 1.第一型曲线积分的计算: 若曲线C 的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,则第一型曲线积分⎰⎰+=Ct t dt t t t t f ds y x f 10)()()](),([),(2'2'ψϕψϕ2.第二型曲线积分的计算:若曲线C的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,BA t t t t ==10,分别对应曲线的两个端点,则第一型曲线积分⎰⎰+=+10)())(),(()())(),((),(),(''t t Cdt t t t Q t t t P dy y x Q dx y x P ψψϕϕψϕ3.格林公式(联系曲线积分和二重积分)设有界闭区域D 由分段光滑曲线C 所围成,C 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则有格林公式⎰=+CQdy Pdx dxdy y P x Q D ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂.注:1.可用第二型曲线积分计算该曲线所围成区域的面积:设有界闭区域D 由取正向的光滑曲线C 所围成,则区域D 的面积为⎰⎰⎰+-==C Dxdy ydx dxdy 21σ. 2. 函数),(),,(y x Q y x P 在区域D 上连续. 二、曲面积分的计算 1.第一型曲面积分的计算: 若曲面S 的方程是:),(y x z z =具有连续偏导数,且在xoy 平面上的投影区域为xy D ,函数),,(z y x f 在S 上连续,则第一型曲面积分dxdy z z y z z y z f dS z y x f xyD y x S⎰⎰++=2'2'1)],(,,[),,(2.第二型曲面积分的计算: 若正向曲面S 的方程是:),(y x z z=,且在xoy 平面上的投影区域为xy D ,函数),,(z y x R 在S 上连续,则第二型曲面积分dxdy y x z y x R dxdy z y x R xyD S⎰⎰=)],(,,[),,(, 同理可得dydz z y z y x R dydz z y x P yzD S⎰⎰=)],),,([),,(;dzdx z x z y x Q dzdx z y x Q zxD S⎰⎰=)]),,(,[),,(3.高斯公式(联系曲面积分和三重积分)若函数),,(),,,(z y x Q z y x P 在空间有界闭区域Ω及其光滑边界曲面S 上具有连续偏导数,则有高斯公式:⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++S dxdydz z R y Q x P Rdxdy Qdzdx Pdydz Ω.注:设空间有界闭区域Ω由光滑封闭曲面S 所围成,则区域Ω的体积为⎰⎰++=S zdxdy ydzdx xdydz V 31. 4.斯托克斯公式(联系曲面积分和三重积分) 若函数),,(),,,(z y x Q z y x P 在光滑曲面S 及其光滑的边界曲线C 上具有连续偏导数,则有斯托克斯公式⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++L D dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx . 三、曲线积分与路径无关的条件 (1). 曲线积分⎰+),(),(),(B A C dy y x Q dx y x P 与路径无关;(2).0),(),(=+⎰Cdy y x Q dx y x P ;(3). 存在函数),(y x u ,使得dy y x Q dx y x P du ),(),(+=; (4). yP x Q ∂∂=∂∂ 第十二章:无穷级数一、级数敛散性的相关性质1.∑∞=1n n a 敛散⇔⎭⎬⎫⎩⎨⎧=∑=n k k n a S 1}{敛散2. ∑∞=1n n a收敛⇒0lim =∞→n n a3. 0lim ≠∞→n n a ⇒∑∞=1n na 发散4. 正项级数∑=n i n a 1的部分和数列}{n S 有界⇒级数∑=n i n a 1收敛 5. ∑=n i n a 1收敛⇒∑=n i n a 1收敛.二、级数敛散性判别1.正项级数敛散性判别(1).比较判别法;(2).比值判别法;(3).根值判别法.2.交错级数收敛性判别法:莱布尼兹判别法3.任意项级数敛性判别法:绝对收敛判别法4.两种常用级数收敛和发散的条件(1). 等比级数∑∞=-11n n aq 收敛条件是1<q ;发散条件是1≥q .(2). p 级数∑=n i pn 11收敛条件是1>p ;发散条件是1≤p .二、幂级数的相关概念1.收敛域的求法(1).对标准幂级数∑∞=0n n nx a ,先求其收敛半径n n n a a R 1lim 11+∞→==ρ,再判断级数∑∞=0n n n R a 以及∑∞=-0)(n n n R a 的敛散性,最后确定收敛域是),(R R -、R],(R -、)R ,[R -以及]R ,[R -中的哪一个.(2). 对非标准幂级数∑∞=0)(n n x a ,先求极限)()()(lim 1x x a x a n n n ϕ=+∞→,当1)(<x ϕ时,∑∞=0)(n n x a 绝对收敛,解出),(b a x ∈,再判断级数∑∞=0n n na a 以及∑∞=0n n nb a 的敛散性,最后确定收敛域是),(b a 、],(b a 、),[b a 以及],[b a 中的哪一个.2.和函数的求法:利用和函数的性质(1).连续性;(2).逐项可微分;(1).逐项可积分.3.函数的幂级数展开式.。