当前位置:文档之家› 万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例

3232万有引力定律应用的12种典型案例万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。

特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。

下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例:【案例1】天体的质量与密度的估算下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。

月球也是地球的一颗卫星。

设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T 4m r Mm G 222π=……①得:232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确3333【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。

总之,牛顿万有引力定律是解决天体运动问题的关键。

【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。

“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。

问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律r v mma rMm G 22==得:2rMG a =,可见“风云一号”卫星的向心加速度大, rGMv =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。

【探讨评价】由万有引力定律得:2M a G r =,v =ω=2T =⑴所有运动学量量都是r 的函数。

我们应该建立函数的思想。

⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。

⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。

⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。

【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上3434D 、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

解析:本题考察地球同步卫星的特点及其规律。

同步卫星运动的周期与地球自转周期相同,T=24h ,角速度ω一定根据万有引力定律r T4m r mM G 222π=得知通讯卫星的运行轨道是一定的,离开地面的高度也是一定的。

地球对卫星的引力提供了卫星做圆周运动的向心力,因此同步卫星只能以地心为为圆心做圆周运动,它只能与赤道同平面且定点在赤道平面的正上方。

故B 正确,C 错误。

不同通讯卫星因轨道半径相同,速度大小相等,故无相对运动,不会相撞,A 错误。

由r v m m a rMm G 22==知:通讯卫星运行的线速度、向心加速度大小一定。

故正确答案是:B 、D【探讨评价】通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定,绕地球做匀速圆周运动;线速度、向心加速度大小相同。

三颗同步卫星就能覆盖地球。

【案例4】“双星”问题天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。

设双星的质量分别是m 1、m 2,星球球心间距为L 。

问:⑴两星体各做什么运动⑵两星的轨道半径各多大⑶两星的速度各多大 解析:本题主要考察双星的特点及其运动规律⑴由于双星之间只存在相互作用的引力,质量不变,距离一定,则引力大小一定,根据牛顿第二定律知道,每个星体的加速度大小不变。

因此它们只能做匀速圆周运动。

⑵由牛顿定律222121221r m r m Lm m Gω=ω=……① 得:1221m m r r = 又L r r 21=+……② 解得:L m m m r L m m m r 21122121+=+=……③3535⑶由①得:)m m (L Gm Lr Gm r v 21221211+==ω= )m m (L Gm L r Gm r v 21122122+==ω= 【探讨评价】双星的特点就是距离一定,它们间只存在相互作用的引力,引力又一定,从而加速度大小就是一个定值,这样的运动只能是匀速圆周运动。

这个结论很重要。

同时利用对称性,巧妙解题,找到结论的规律,搞清结论的和谐美与对称美对我们以后的学习也很有帮助。

【案例5】“两星”问题如图是在同一平面不同轨道上运行的两颗人造地球卫星。

设它们运行的周期分别是T 1、T 2,(T 1<T 2),且某时刻两卫星相距最近。

问:⑴两卫星再次相距最近的时间是多少 ⑵两卫星相距最远的时间是多少解析:本题考察同一平面不同轨道上运行的两颗人造地球卫星的位置特点及其卫星的运动规律 ⑴依题意,T 1<T 2,周期大的轨道半径大,故外层轨道运动的卫星运行一周的时间长。

设经过△t 两星再次相距最近则它们运行的角度之差πφ2=∆……① π=π-π2t T 2t T 2:21即 ……② 解得:1221T T T T t -=⑵两卫星相距最远时,它们运行的角度之差()πφ12+=∆k ……③ ()π+=π-π1k 2t T 2t T 2:21即……④ k=0.1.2…… 解得:1221T T T T 21k 2t -⋅+=……⑤ k=0.1.2……【探讨评价】曲线运动求解时间,常用公式φ=ωt ;通过作图,搞清它们转动的角度关系,以及终边相同的角,是解决这类问题的关键。

【案例6】同步卫星的发射问题发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿3636椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。

设轨道1、2相切于Q 点,轨道2、3相切于P 点,则卫星分别在1、2、3轨道上正常运行时,⑴比较卫星经过轨道1、2上的Q 点的加速度的大小;以及卫星经过轨道2、3上的P 点的加速度的大小⑵设卫星在轨道1、3上的速度大小为v 1、v 3 ,在椭圆轨道上Q 、P 点的速度大小分别是v 2、v 2/,比较四个速度的大小解析:同步卫星的发射有两种方法,本题提供了同步卫星的一种发射方法,并考察了卫星在不同轨道上运动的特点。

⑴根据牛顿第二定律,卫星的加速度是由于地球吸引卫星的引力产生的。

即:ma rMmG 2=可见 卫星在轨道2、3上经过P 点的加速度大小相等;卫星在轨道1、2上经过Q 点的加速度大小也相等;但P 点的加速度小于Q 点的加速度。

⑵1、3轨道为卫星运行的圆轨道,卫星只受地球引力做匀速圆周运动由r v m rMm G 22=得:rGMv =可见:v 1>v 3由开普勒第二定律知,卫星在椭圆轨道上的运动速度大小不同,近地点Q 速度大,远地点速度小,即:v 2>v 2/卫星由近地轨道向椭圆轨道运动以及由椭圆轨道向同步轨道运动的过程中,引力小于向心力,r v m rMm G 22=,卫星做离心运动,因此随着轨道半径r 增大,卫星运动速度增大,它做加速运动,可见:v 2>v 1,v 3>v 2/因此:v 2>v 1>v 3>v 2/【探讨评价】卫星运动的加速度是由地球对卫星的引力提供的,所以研究加速度首先应考虑牛顿第二定律;卫星向外轨道运行时,做离心运动,半径增大,速度必须增大,只能做加速运动。

同步卫星是怎样发射的呢通过上面的例题及教材学习,我们知道:同步卫星的发射有两种方法,一是直接发射到同步轨道;二是先发射到近地轨道,然后再加速进入椭圆轨道,再加速进入地球的同步轨道。

3737【案例7】 “连续群”与“卫星群”土星的外层有一个环,为了判断它是土星的一部分,即土星的“连续群”,还是土星的“卫星群”,可以通过测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断:A 、 若v ∝R ,则该层是土星的连续群B 、 若v 2∝R ,则该层是土星的卫星群C 、 若R 1v ∝,则该层是土星的连续群 D 、 若R1v 2∝,则该层是土星的卫星群解析:本题考察连续物与分离物的特点与规律⑴该环若是土星的连续群,则它与土星有共同的自转角速度, R v ω=,因此v ∝R⑵该环若是土星的卫星群,由万有引力定律R v m RMm G 22=得:R1v 2∝故A 、D 正确 【探讨评价】土星也在自转,能分清环是土星上的连带物,还是土星的卫星,搞清运用的物理规律,是解题的关键。

同时也要注意,卫星不一定都是同步卫星。

【案例8】宇宙空间站上的“完全失重”问题假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是: A 、天平称物体的质量 B 、用弹簧秤测物体的重量 C 、用测力计测力D 、用水银气压计测飞船上密闭仓内的气体压强E 、用单摆测定重力加速度F 、用打点计时器验证机械能守恒定律解析:本题考察了宇宙空间站上的“完全失重”现象。

宇宙飞船绕地球做匀速圆周运动时,地球对飞船的引力提供了向心加速ma rMmG2=,可见38382rMGa =……① 对于飞船上的物体,设F 为“视重”,根据牛顿第二定律得:a m F rMm G /2/=-……②解得:F=0,这就是完全失重在完全失重状态下,引力方向上物体受的弹力等于零,物体的重力等于引力,因此只有C 、F 实验可以进行。

其它的实验都不能进行。

【探讨评价】当物体的加速度等于重力加速度时,引力方向上物体受的弹力等于零,但物体的重力并不等于零;在卫星上或宇宙空间站上人可以做机械运动,但不能测定物体的重力。

【案例9】黑洞问题“黑洞”问题是爱因斯坦广义相对论中预言的一种特殊的天体。

它的密度很大,对周围的物质(包括光子)有极强的吸引力。

根据爱因斯坦理论,光子是有质量的,光子到达黑洞表面时,也将被吸入,最多恰能绕黑洞表面做圆周运动。

相关主题