电磁感应中的动力学问题分析一、基础知识1、安培力的大小由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R. 2、安培力的方向判断3、导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零)列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.4、解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.二、练习1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v .(2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .解析 (1)对匀速下滑的导体棒进行受力分析如图所示.导体棒所受安培力F 安=BIl ①导体棒匀速下滑,所以F 安=Mg sin θ②联立①②式,解得I =Mg sin θBl③ 导体棒切割磁感线产生感应电动势E =Bl v ④由闭合电路欧姆定律得I =E R +R x,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2(2)由题意知,其等效电路图如图所示.由图知,平行金属板两板间的电压等于R x 两端的电压.设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥要使带电的微粒匀速通过,则mg =q U d⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ. 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ2、如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后 ( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变答案 BC解析 对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确;因此答案选B 、C.3、如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求:(1)导轨对杆ab 的阻力大小F f .(2)杆ab 中通过的电流及其方向.(3)导轨左端所接电阻的阻值R .答案 (1)F -m v 22d (2)m v 22Bld ,方向由a 流向b (3)2B 2l 2d m v-r 解析 (1)杆ab 进入磁场前做匀加速运动,有F -F f =mav 2=2ad解得导轨对杆的阻力F f =F -m v 22d(2)杆ab 进入磁场后做匀速运动,有F =F f +F 安杆ab 所受的安培力F 安=IBl解得杆ab 中通过的电流I =m v 22Bld由右手定则判断杆中的电流方向自a 流向b(3)杆运动过程中产生的感应电动势E =Bl v杆中的感应电流I =E R +r解得导轨左端所接电阻阻值R =2B 2l 2d m v-r4、(2011·天津理综·11)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?答案 (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J解析 (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30°代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c(2)棒ab与棒cd受到的安培力大小相等F ab=F cd对棒ab,由受力平衡知F=mg sin 30°+IlB代入数据解得F=0.2 N(3)设在时间t内棒cd产生Q=0.1 J的热量,由焦耳定律知Q=I2Rt设棒ab匀速运动的速度大小为v,其产生的感应电动势E=Bl v由闭合电路欧姆定律知I=E 2R由运动学公式知在时间t内,棒ab沿导轨的位移s=v t力F做的功W=Fs综合上述各式,代入数据解得W=0.4 J5、如图,两根足够长光滑平行金属导轨PP′、QQ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M、N相连,板间距离足够大,板间有一带电微粒,金属棒ab水平跨放在导轨上,下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab,则()A.金属棒ab最终可能匀速下滑B.金属棒ab一直加速下滑C.金属棒ab下滑过程中M板电势高于N板电势D.带电微粒不可能先向N板运动后向M板运动答案BC解析 金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M 、N 充电,充电电流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有mg sin θ-BIL >0,金属棒将一直加速下滑,A 错,B 对;由右手定则可知,金属棒a 端(即M 板)电势高,C 对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0,微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N 板减速运动到零后再向M 板运动,D 错.6、如图 (a)所示为磁悬浮列车模型,质量M =1 kg 的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上.位于磁场中的正方形金属框ABCD 为动力源,其质量m =1 kg ,边长为1 m ,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.4.OO ′为AD 、BC 的中线.在金属框内有可随金属框同步移动的磁场,OO ′CD 区域内磁场如图(b)所示,CD 恰在磁场边缘以外;OO ′BA 区域内磁场如图(c)所示,AB 恰在磁场边缘以内(g =10 m/s 2).若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后 ( )A .若金属框固定在绝缘板上,金属框的加速度为3 m/s 2B .若金属框固定在绝缘板上,金属框的加速度为7 m/s 2C .若金属框不固定,金属框的加速度为4 m/s 2,绝缘板仍静止D .若金属框不固定,金属框的加速度为4 m/s 2,绝缘板的加速度为2 m/s 2答案 AD解析 若金属框固定在绝缘板上,由题意得E =ΔB 1Δt ·12S ABCD =1×12×1×1 V =0.5 V ,I =E R=8 A ,F AB =B 2IL =8 N ,取绝缘板和金属框整体进行受力分析,由牛顿第二定律:F AB -μ1(M +m )g =(M +m )a ,解得a =3 m/s 2,A 对,B 错;若金属框不固定,对金属框进行受力分析,假设其相对绝缘板滑动,F f1=μ2mg =0.4×1×10 N =4 N<F AB ,假设正确.对金属框应用牛顿第二定律得F AB -F f1=ma 1,a 1=4 m/s 2;对绝缘板应用牛顿第二定律得F f1-F f2=Ma 2,F f2=μ1(M +m )g =2 N ,解得a 2=2 m/s 2,C 错,D 对.。