当前位置:文档之家› 专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题(答题时间:30分钟)1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A. 金属棒ab、cd都做匀速运动B. 金属棒ab上的电流方向是由b向aC. 金属棒cd所受安培力的大小等于2F/3D. 两金属棒间距离保持不变2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。

位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg,边长为1 m,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.4。

OO′为AD、BC的中线。

在金属框有可随金属框同步移动的磁场,OO′CD区域磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域磁场如图(c)所示,AB恰在磁场边缘以(g=10 m/s2)。

若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s23. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是()4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。

当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。

若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知()A. 小车的水平长度l=15 cmB. 磁场的宽度d=35cmC. 小车的位移x=10 cm时线圈中的电流I=7 AD. 线圈通过磁场的过程中线圈产生的热量Q=1.92J5. 如图甲所示,abcd 是位于竖直平面的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B 的匀强磁场区域,MN 和M ′N ′是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直。

现金属线框由距MN 的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的vt 图象。

已知金属线框的质量为m ,电阻为R ,当地的重力加速度为g ,图象中坐标轴上所标出的字母v 1、v 2、v 3、t 1、t 2、t 3、t 4均为已知量。

(下落过程中bc 边始终水平)根据题中所给条件,以下说确的是( )A. 可以求出金属框的边长B. 线框穿出磁场时间(t 4-t 3)等于进入磁场时间(t 2-t 1)C. 线框穿出磁场与进入磁场过程所受安培力方向相同D. 线框穿出磁场与进入磁场过程产生的焦耳热相等6. 如图甲所示,bacd 为导体做成的框架,其平面与水平面成θ角,质量为m 的导体棒PQ 与ab 、cd 接触良好,回路的电阻为R ,整个装置放于垂直框架平面的变化磁场中,磁感应强度B 的变化情况如图乙所示,PQ 能够始终保持静止,则0~t 2时间,PQ 受到的安培力F 和摩擦力F f 随时间变化的图象可能正确的是(取平行斜面向上为正方向)( )7. 如图甲,在虚线所示的区域有垂直纸面向里的匀强磁场,磁场变化规律如图乙所示,面积为S 的单匝金属线框处在磁场中,线框与电阻R 相连。

若金属框的电阻为R 2,则下列说确的是( )A. 流过电阻R 的感应电流由a 到bB. 线框cd 边受到的安培力方向向下C. 感应电动势大小为2B 0S t 0D. ab 间电压大小为2B 0S 3t 08. 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中;左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计。

磁感应强度为B 2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m 、电阻为R 的导体棒此时恰好能静止在导轨上,分析下述判断不正确的有( )A. 圆形线圈中的磁场,可以向上均匀增强,也可以向下均匀减弱B. 导体棒ab 受到的安培力大小为mg sin θC. 回路中的感应电流为mg sin θB 2dD. 圆形导线中的电热功率为m 2g 2sin 2θB 22d2(r +R ) 9. 如图所示,abcd 是一个质量为m ,边长为L 的正方形金属线框。

如从图示位置自由下落,在下落h 后进入磁感应强度为B 的磁场,恰好做匀速直线运动,该磁场的宽度也为L 。

在这个磁场的正下方h +L 处还有一个未知磁场,金属线框abcd 在穿过这个磁场时也恰好做匀速直线运动,那么下列说确的是( )A. 未知磁场的磁感应强度是2BB. 未知磁场的磁感应强度是2BC. 线框在穿过这两个磁场的过程中产生的电能为4mgLD. 线框在穿过这两个磁场的过程中产生的电能为2mgL10. 如图所示,在水平面固定着足够长且光滑的平行金属轨道,轨道间距L =0.40m ,轨道左侧连接一定值电阻R =0.80Ω。

将一金属直导线ab 垂直放置在轨道上形成闭合回路,导线ab 的质量m =0.10kg 、电阻r =0.20Ω,回路中其余电阻不计。

整个电路处在磁感应强度B =0.50T 的匀强磁场中,B 的方向与轨道平面垂直。

导线ab 在水平向右的拉力F 作用下,沿力的方向以加速度a =2.0m/s 2由静止开始做匀加速直线运动,求:(1)5s末的感应电动势大小;(2)5s末通过R电流的大小和方向;(3)5s末,作用在ab金属杆上的水平拉力F的大小。

11. 如图所示,两根平行金属导轨固定在同一水平面,间距为l,导轨左端连接一个电阻。

一根质量为m、电阻为r的金属杆ab垂直放置在导轨上。

在杆的右方距杆为d处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B。

对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v,之后进入磁场恰好做匀速运动。

不计导轨的电阻,假定导轨与杆之间存在恒定的阻力。

求:(1)导轨对杆ab的阻力大小F f;(2)杆ab过的电流及其方向;(3)导轨左端所接电阻的阻值R。

12. 如图所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面。

在水平面a1b1b2a2区域和倾角θ=37°的斜面c1b1b2c2区域分别有磁感应强度B1=0.4 T,方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场。

电阻R=0.3 Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。

一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环。

已知小环以a=6 m/s2的加速度沿绳下滑,K 杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。

不计导轨电阻和滑轮摩擦,绳不可伸长。

取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率。

专题突破电磁感应中的动力学问题1. BC 解析:对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确;因此答案选B 、C 。

2. AD 解析:若金属框固定在绝缘板上,由题意得E =ΔB 1Δt ·12S ABCD =1×12×1×1 V =0.5 V ,I =E R=8 A ,F AB =B 2IL =8 N ,取绝缘板和金属框整体进行受力分析,由牛顿第二定律:F AB -μ1(M +m )g =(M +m )a ,解得a =3 m/s 2,A 对,B 错;若金属框不固定,对金属框进行受力分析,假设其相对绝缘板滑动,F f1=μ2mg =0.4×1×10 N =4 N<F AB ,假设正确。

对金属框应用牛顿第二定律得F AB -F f1=ma 1,a 1=4 m/s 2;对绝缘板应用牛顿第二定律得F f1-F f2=Ma 2,F f2=μ1(M +m )g =2 N ,解得a 2=2 m/s 2,C 错,D 对。

3. ACD 解析:若ab 杆速度为v 时,S 闭合,则ab 杆中产生的感应电动势E =BLv ,ab 杆受到的安培力Rv L B F 22=,如果安培力等于ab 杆的重力,则ab 杆匀速运动,A 项正确;如果安培力小于ab 杆的重力,则ab 杆先加速最后匀速,C 项正确;如果安培力大于ab 杆的重力,则ab 杆先减速最后匀速,D 项正确;ab 杆不可能匀加速运动,B 项错。

4. C 解析:从x =5 cm 开始,线圈进入磁场,线圈中有感应电流,在安培力作用下小车做减速运动,速度v 随位移x 减小,当x =15 cm 时,线圈完全进入磁场,小车做匀速运动。

小车的水平长度l =10 cm ,A 项错;当x =30 cm 时,线圈开始离开磁场,则d =30cm -5cm =25cm ,B 项错;当x =10 cm 时,由图象知,线圈速度v 2=7 m/s ,感应电流R nBhv R E I 2===7A ,C 项正确;线圈左边离开磁场时,小车的速度为v 3=2 m/s ,线圈上产生的电热为Q = 12(M +m )(2221v v -)=5.76J ,D 项错。

5. AC 解析:由线框运动的vt 图象,可知0~t 1线框自由下落,t 1~t 2线框进入磁场,t 2~t 3线框在磁场中只受重力作用加速下降,t 3~t 4线框离开磁场。

线框的边长l =v 3(t 4-t 3),选项A 正确;由于线框离开时的速度v 3大于进入时的平均速度,因此线框穿出磁场时间小于进入磁场时间,选项B 错;线框穿出磁场与进入磁场过程所受安培力方向都竖直向上,选项C 正确;线框进入磁场mgl =Q 1+12mv 22-12mv 21,线框离开磁场mgl =Q 2,可见Q 1<Q 2,选项D 错。

相关主题