编号: 班级: 学号:姓名: 成绩:第1章 静电场1. 证明均匀介质内部的极化电荷体密度p ρ,总等于自由电荷体密度f ρ的 -(1-εε0)倍。
f ρ=⋅∇DE])[(E)(P 00εεεχρ-⋅-∇=⋅-∇=⋅-∇=e PfP ρεεεεερ)(D])[(001--=-⋅-∇=2. 有一内外半径分别为21和r r 的空心介质球,介质的介电常数为ε,使介质内均匀带静止自由电荷f ρ,求 (1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
解 1)由电荷分布的对称性可知:电场分布也是对称的。
电场方向沿径向 故:1r r<时0402==⎰dV r r fVερπ)E( 或 0=)E(r 21r r r <<时 球壳体内:dr r r D r ds rr f ⎰⎰⎰==⋅12244πρπ)(n D])([)(3113r r rr D f -=ρ ])([)()(310013rr rr D r E f -==ερε 在2r r>的球形外:)()(212202023441421r r dr r r E r r rf -==⎰ρεππρεπ )()(2122203r r rr E -=ερ 式中 r εεε0= 写在一起⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<<-<=)(r )()(r])([)(E 22122302131013130r r r r r r r r r r r r f ερερ2) r ])([)(E D P 310013rrf --=-=ερεεε f p ρεεερ0--=⋅-∇=P (与第一题相符) 内表面:013031101011=-=--⋅-=-⋅-===])([]E )[(n )p (p n 12r rr f r r r r p ερεεσ 外表面:2222100013022r r r rr r r p )()(E])([n )p (p n 12--=--⋅-=-⋅-===ερεεεεσ3. 证明:当两种绝缘介质的分界面上不带面自由电荷时,电场线的偏折 满足:1212tan tan εεθθ= 式中1ε和2ε分别为两介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。
证明:绝缘介质分界面上自由电荷密度0=f σ,故边值关系为:t t E E 12=,n n D D 12= (012=-⨯)E (E n ,f σ=-⋅)D (D n 12)若两种介质都是线性均匀的,即111E D ε=,222E D ε= ; 上边两式为:1122θθsin sin E E =,111222θεθεcos cos E E = 于是得:1212tan tan εεθθ=4. 试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面。
证明:设介质1为导体,介质2为绝缘体。
静电情况下:0=1E ,0=1D由边值关系:012=-⨯)E (E n ,f σ=-⋅)D (D n 12 可得:t t E E 12=,f n n D D σ=-12 即,02=t E ,f n D σ=2 对于各向同性线性介质E D ε=所以,n E εσf= 即导体外的电场线垂直于导体表面1 导体2 绝缘体5. 如图1,有一厚度为a 2,电荷密度为0ρ的均匀带电无限大平板,试用分离变量法求空间电势的分布。
解:以O 原点建立如图坐标系,为根据问题的对称性, 电势分布仅与x 有关,即一维问题。
容易写出定解问题:⎪⎪⎩⎪⎪⎨⎧>=<-=)()(a x dx d a x dx d i i 01220022ϕρεϕa x =时 e i ϕϕ=xx ei ∂∂=∂∂ϕϕ 0=x 时 0=)(x i ϕ图1直接求解得202x i ερϕ-= )(a x a e --=220ερϕ6. 内半径a ,外半径为b 的两个同心导体球壳,令内球接地,外球带电量Q ,试用分离变量法求空间电势分布。
解.根据球对称性,空间电势分布ϕ仅与r 有关,定结问题为:⎩⎨⎧>=∇<<=∇)()(b r b r a 002212ϕϕ01==a r ϕr=b 时 21ϕϕ= Q ds rr =∂∂-∂∂⎰)(2010ϕεϕε 02=∞→r ϕ求解得)(r ab Q -=1401πεϕ )(ba rQ -=1401πεϕ7. 均匀外电场中0E ,置入半径为0R 的导体球。
求以下两种情况的电势分布。
(1)导体球上接有电池,使球保持电势为0Φ;(2)导体球上带有总电荷Q 。
解 建立球坐标系 极轴方向为均匀电场方向,可知电势分布具有轴对称性,即电势仅与r 有关 1)ϕ的定解问题为⎪⎩⎪⎨⎧+-=Φ=>=∇∞→=0000200ϕθϕϕϕcos )(r E R r r R r此时0ϕ是导体球放入前,通过坐标原点的等势面的电势,用分离变量法解为230000000r R E r R r E θϕθϕϕcos )(cos +-Φ+-=2)ϕ的定解问题为⎪⎪⎪⎩⎪⎪⎪⎨⎧-=∂∂Φ==∇⎰==00r 0020R R r Qds nεϕϕϕ)('待定类似解为23000004r R E r Qr E θπεθϕϕcos cos ++-=8. 介电常数为ε的无限均匀介质中,挖一个半径为a 的空球,球心处置一电矩为f p 的自由偶极子,试求空间电势分布。
解 如图建立球坐标系,f p 的方向为极轴x e 方向,ϕ的定解问题为⎪⎪⎩⎪⎪⎨⎧=>=∇<-=∇∞→001202r e e i a r a r ϕϕρεϕ)()(r=a 时,e i ϕϕ=;rr e i ∂∂=∂∂ϕεϕε0注意到泊松方程解的性质及电势分布具有轴对称性,i ϕ可写为:)(cos ][cos )(θπεθϕn n n n n n f i P r B r A r p 10204+-∞=∑++=第二项为极化电荷激发的势,该项在球心应为有限值,故B n =0 解的电势分布⎪⎪⎩⎪⎪⎨⎧>+⋅=<<+⋅--⋅=)()(r p )()(r p )(r p a r r a r a r f e f f i 303000302430224εεπϕεεπεεεπεϕ9.半径为R 的均匀介质球中心置一自由偶极子f p ,球外充满另一种介质,求空间各点的电势和极化电荷分布(介质球介电常数为1ε,球外为2ε)。
解:求解与上题类似,只需,,210εεεε→→ 得()()()030211213112424R r Rr<+⋅-+⋅=εεπεεεπεϕrp r p f f ,()()03212243R r r ≥+⋅=εεπϕrp f ,极化电荷分布,在介质球内f p ρεερ⎪⎭⎫ ⎝⎛--=01 因此在球心处有一极化电偶极矩f p p ⎪⎭⎫⎝⎛--=εε01, 在0R r =的界面上,由()12p p p n σ-⋅-=,()ϕεε∇-=0p 可得,()()()()302112102101012022230R p r rr r f R r R r p εεπεθεεεϕϕεϕεεϕεεσ+-=⎪⎭⎫⎝⎛∂∂-∂∂=⎥⎦⎤⎢⎣⎡∂∂--∂∂-===cos10. 两个接地的无限大导电平面,其夹角为︒60,点电荷Q 位于这个两面角的平面上,并与棱边(两面角之交线)相距为α。
试用电像法求真空中的电势。
解:考虑到两个无限大导电平面是接地的,且点电荷Q 位于双面角的平分线上,可按下面的方法求得像电荷的位置和大小:(1)首先考虑半面'ON ,为了满足'ON 平面的电势为零,应在Q 关于'ON对称的位置B 处有一像电荷-Q , (2)考虑半面ON ,同样为了满足电势为零的要求,对于A 、B 处两个点电荷+Q 和-Q ,应在A 、B 关于ON 对称的位置C 、D 处有两个-Q 、+Q ,(3)再考虑'ON 半平面,对于C 、D 处的-Q 和+Q ,应在E 、F 处有两个像电荷+Q 和-Q 才能使导体'ON 的电势为零。
可以证明E 、F 处的两个点电荷+Q 和-Q 关于ON 平面对称,因而可满足ON 平面的电势为零,这样找出了5个像电荷,加上原来给定的点电荷,能够使角域内的场方程和边界条件得到满足,所以角域内任一点P 处的电势可表为()⎪⎪⎭⎫ ⎝⎛-+-+-=654321041r Q r Q r Q r Q r Q r Q x πεϕ, 其中621r r r ,,, 分别为给定电荷Q 及其像电荷到P 点的距离。
在其余空间的电势为0=ϕ。
-Q11. 接地空心导体球,内外半径为1R 和2R ,球内离球心a 处(1R a <)置一点电荷Q ,试用电像法求空间电势分布。
导体上感应电荷分布在内表面还是外表面?其量为多少?若导体球壳不接地而是带电量0Q ,则电势分布又如何?若导体球壳具有确定的电势0ϕ,电势分布如何? 解:根据题意设球内区域电势为1ϕ,球外区域电势为2ϕ,()⎪⎪⎩⎪⎪⎨⎧===∇--=∇∴==00212122012R R R R z y a x Q ϕϕϕδεϕ,,, 设像电荷位置如图所示,⎪⎪⎭⎫⎝⎛+=''rQ r Q 0141πεϕ 其中()()122212222θθcos ,cos 'Rb b R r Ra a R r -+=-+=由边界条件011==R R ϕ()()θθcos cos 'a R a R Q b R b R Q 122121221222-+=-+ ()()()θcos ''a Q b Q R b R Q b R Q 221221222122-=+-+要使上式对任意θ成立,必有()()()⎩⎨⎧=-=+-+02022122122212a Q b Q R b R Q b R Q ''(*) ()0212122=++-∴R R a ab b 解得a b aR b ==2211,,(舍去) 代入(*),得Q aR Q Q a R Q 1211=-='', Q aRQ a R b 121-==∴,,由上可知,2041R Q Q +=πεϕ',()()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+--+=20021212212121220412241R Q Q a R R a RR aQR Ra a R Q πεθθπεϕcos ///cos 若使有确定0ϕ,且两种情况有相同解20041R Q Q +=πεϕ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--+=θθπεϕcos /cos a R R a R R a QR Ra a R Q 21241212202241, 由边界条件σϕεϕε-=∂∂-∂∂nn 1122所以,外表面感应电荷面密度0201=∂∂==R R Rϕεσ,内表面感应电荷面密度()⎥⎥⎦⎤⎢⎢⎣⎡-+-=∂∂==231221122102241θπϕεσcos a R a R R a R Q R R R , 总感应电荷Q ds Q s-==⎰2σ感应,(可见全部在内表面上)12. 四个点电荷,两个+q ,两个-q ,分别处于边长为a 的正方形的四个顶点,相邻的符号相反,求此电荷体系远处的电势。