当前位置:文档之家› 高等数学定积分应用

高等数学定积分应用

第六章 定积分的应用本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。

一、教学目标与基本要求:使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等)二、本章各节教学内容及学时分配:第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时三、本章教学内容的重点难点:找出未知量的元素(微元)的方法。

用元素法建立这些几何、物理的公式解决实际问题。

运用元素法将一个量表达为定积分的分析方法6.1定积分的微小元素法一、内容要点1、复习曲边梯形的面积计算方法,定积分的定义面积A ⎰∑=∆==→bani i i dx x f x f )()(lim 1ξλ面积元素dA =dx x f )(2、计算面积的元素法步骤: (1)画出图形;(2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形;(3)计算出面积元素;(4)在面积元素前面添加积分号,确定上、下限。

二、教学要求与注意点掌握用元素法解决一个实际问题所需要的条件。

用元素法解决一个实际问题的步骤。

三、作业356.2定积分在几何中的应用一、内容要点1、在直角坐标系下计算平面图形的面积 方法一面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰第一步:在D 边界方程中解出y 的两个表达式)(1x y ϕ=,)(2x y ϕ=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ϕ)(2x ϕ=解出,b x a ≤≤,)()(21x y x ϕϕ≤≤,面积S =x x x bad )]()([12ϕϕ-⎰方法二面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dcd )]()([12ϕϕ-⎰第一步:在D 边界方程中解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=.第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ϕ)(2y ϕ=解出,d y c ≤≤,)()(21y x y ϕϕ≤≤,面积S =y y y d cd )]()([12ϕϕ-⎰例1 求22-=x y ,12+=x y 围成的面积解⎪⎩⎪⎨⎧+=-=1222x y x y ,1222+=-x x ,1-=x ,3=x 。

当31<<-x 时1222+<-x x ,于是面积⎰--=+-=--+=31313223210)331()]2()12[(x x x dx x x例2 计算4,22-==x y x y 围成的面积解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时45.02+<y y面积=⎰--+422]5.04[dy y y =18。

2、在曲边梯形)(x f y =、0=y 、a x =、b x =(b a x f <≥,0)()中,如果曲边)(x f y =的方程为参数方程为⎩⎨⎧==)()(t y t x φϕ,则其面积dx y A ba ⎰= =dt t t )(')(ϕφβα⎰,其中)(),(βϕαϕ==b a例3 求x 轴与摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t 围成的面积)解 面积⎰⋅-=π202)cos 1(dt t a ⎰++-=π202)22cos 1cos 21(dt tt a π202)22cos 1sin 223(t t t a ++-=23a π= 例4 星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos (0>a )围成的面积.解 面积⎰⎰-==adt t t t aydx 02232)sin )(cos 3(sin44π=⎰=-20364283)sin (sin 12ππa dt t t a3、极坐标系下计算平面图形的面积。

极坐标曲线)(θρρ=围成的面积的计算方法: 解不等式0)(≥θρ,得到βθα≤≤。

面积=θθρβαd 2)]([21⎰ 4、平行截面面积为已知的空间物体的体积过x 轴一点x 作垂直于x 轴的平面,该平面截空间物体的 截面面积为)(x A ,b x a ≤≤,则该物体的体积dx x A V ba )(⎰=例1 一空间物体的底面是长半轴10=a ,短半轴5=b 的椭 圆,垂直于长半轴的截面都是等边三角形,求此空间体的体积。

解 截面面积)1001(2533221)(2x y y x A -⋅=⋅=⎰-==1010325)(dx x A V ⎰-=-1010233100)1001(dx x5、旋转体体积在],[b a 上0)(≥x f ,曲线)(x f y =、直线0,,===y b x a x 围成的曲边梯形 1)绕x 轴旋转一周形成旋转体,其截面面积)()(2x f x A π=, 旋转体体积⎰=ba dx x f V )(2π。

2)绕y 轴旋转一周形成旋转体:位于区间[x,x+dx]上的部分绕y 轴旋转一周而形成的旋转体体积)()()(22x f x x f dx x v ππ-⋅+≈∆dx x xf )(2π≈,原曲边梯形绕y 轴旋转一周形成的旋转体体积dx x xf V ba)(2⎰=π。

例2摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )20(π≤≤t 与x 轴围成的图形1)绕x 轴旋转形成的旋转体体积 dx y V a 220⎰=ππdt t a 3320)cos 1(-=⎰ππ3a π=yxdt t t t )cos cos 3cos 31(3220-+-⎰π=225a π2)绕y 轴旋转形成的旋转体体积πππ2220=⋅=⎰ydx x V adt t t t a 2320)cos 1)(sin (--⎰π=dtt t a 2203)cos 1([2-⎰ππ])cos 1(sin 220dt t t -⋅-⎰π336a π=3)绕a y 2=旋转形成的旋转体的截面面积)4(])2()2[(22y a y y a a -=--ππ。

绕a y 2=旋转形成的旋转体体积dx y a y V a )4(20-=⎰ππdt t t t a )cos 1)(cos 3)(cos 1(320-+-=⎰ππdt t t t a )cos cos cos 53(32203++-=⎰ππ327a π=例3 求心形线)cos 1(4ϕρ+=与射线0=ϕ、2/πϕ=围成的绕极轴旋转形成的旋转体体积解 心形线的参数方程为x )cos (cos 42ϕϕ+=,)cos 1(sin 4ϕϕ+=y ,旋转体体积dx y V 280⎰=π=ϕϕϕϕϕππd )cos 21(sin )cos 1(sin 642202/+⋅+-⎰=π160θθθθcos )(sin )(''r r y +=,弧微分θd y x ds 22''+=θd r r 22'+=。

例1求摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )0)(20(>≤≤a t π的长解dt t a dx )cos 1(-=,tdt a dy sin =,a dt t a dy dx ds 2)1cos 21(222=+-=+=dt t2sin 。

弧长a t a dt t a s 82cos 42sin 22020=-==⎰ππ例2摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 上求分摆线第一拱成1:3的点的坐标解 设A 点满足要求,此时c t =。

根据例2摆线第一拱成弧长a 8,a ds 2=dt t 2sin 。

由条件弧OA 的长为a 2,即a dt t a c 22sin 20=⎰,32π=c ,点A 的坐标为)23,)2332((a a -π例3 求星形线323232a y x =+的全长 解星形线的参数方程为⎪⎩⎪⎨⎧==ta y ta x 33sin cos ,π20≤≤t , tdt t a dx sin cos 32-=,tdt t a dy 2sin cos 3=,t t t t a ds 4224sin cos sin cos 3+=dt t t a dt |cos sin |3=.弧长a tdt t a s 6cos sin 3420==⎰πa t 6sin 202=π。

例4 求对数螺线ϕρ2e =上0=ϕ到πϕ2=的一段弧长 解 ϕρ22'e =,弧长ϕρρπd s 2'220+=⎰=ϕϕπd e 2205⎰=)1(254-πe 二、教学要求与注意点掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积三、作业 同步训练 35、36、37一直角坐标的情形定理1:由两条连续曲线)(),(21x f y x f y ==, )()(21x f x f ≤以及直线x=a,x=b 所围平面图形的面积为:dx x f x f A ba⎰-=))()((12证明:有微小元素法:dx x f x f dA ))()((12==,则⎰-=badx x f x f A )]()([12注意:1. 从几何意义容易看出⎰⎰-=babadx x f dx x f A )()(122. 若无)()(21x f x f ≤这一条件,则面积⎰-=badx x f x fA |)()(|123. 同理,曲线),(),(21y g x y g x ==与y=c,y=d 所围区域的面积为⎰-=dcdy y g y g A )]()([12,其中)()(21y g y g ≤例1:求抛物线3x 4x y 2-+-=及其点)3,0(-和)0,3(处的切线所围成图形的面积解:4x 2y K+-='=在)3,0(-点处,4K 1=,切线方程3x 4y -= 在)0,3(点处,2K 2-=,切线方程6x 2y +-=⎩⎨⎧+-=-=6x 2y 3x 4y 得交点⎪⎭⎫⎝⎛3,23 []d x x xx S ⎰-+---=2302)34(34[]d x x xx ⎰-+--+-+3232)34(62⎰⎰+-+=32322302)96(dx x x dx x498989=+=定理2:若平面曲线由参数方程给出,))((),(21t t t t y t x ≤≤==ψφ且)(),(t t ψφ在[21,t t ]连续,0)(>'t φ,则曲线与x=a,x=b 以及x 轴所围的曲边梯形的面积为:⎰⎰'==bat t dt t t dx x f A 21)(|)(||)(|φψ例1. 求摆线x=a(t-sint),y=a(1-cost) (a>0)的一拱与x 轴所为的面积解:22220203)cos 1(])sin ()[cos 1(a dt t a dt t t a t a A πππ=-='--=⎰⎰二极坐标的情形定理3:设曲线)(θφ=r 且 )(θφ在[βα,]上连续,非负παβ2≤-则有曲线)(θφ=r 与射线βθαθ==,所围区域(称为曲边扇形)的面积为:θθφβαd A ⎰=)(212证明:又微小元素法[θθθd +,]上的面积微元是:θθφd dA )(212=,所以θθφβαd A ⎰=)(212例1、 求双纽线θ2cos 22a r =所围的平面图形的面积。

相关主题