当前位置:文档之家› 随机过程习题答案A

随机过程习题答案A

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:(2),因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

记每天天晴为0,下雨为1,则此链的状态可以由三位二进制数表示。

如三天晴为000,为状态0;第一天晴,第二天晴,第三天雨为001,为状态1;第一天晴,第二天雨,第三天晴为010,为状态2;第一天晴,后两天阴为011,为状态3,等等。

根据题目条件,得到一步转移矩阵如下:第四讲作业:P113/13.解:画出状态转移图,有:P113/14. 解:画出状态转移图,有:P113/16.解:画出状态转移图,有:(1)由于三个状态都是相通的,所以三个状态都是常返态。

(3)状态3、4无法和其他状态相通,组成一个闭集,且,所以状态3、4为常返态;另外状态0、2相通组成一个闭集,且,故状态0、2是常返态;因为,故,所以状态1为非常返态。

(4)0、1相通作成一闭集,且,故0、1为常返态;又,因此,故2为常返态;,故3、4为非常返态。

第六讲作业:P115/17.解:(1)一步转移矩阵为:(2)当时,由计算可得,因此可由以下方程组计算极限分布:解得极限分布即可。

P115/18.解:由第七题的结果,计算可得:,因此可计算极限分布如下:解以上方程,得极限分布:P115/19.解:见课上讲稿。

P116/21.解:记,则有:(1)因为:(A)当时,有:由(A)可得:当且时,有:由(A)可得:当且时,有:由(A)可得:另外:下列等式是明显的因此我们有:即{是一齐次马氏链。

一步转移矩阵为:(2)画出转移矩阵图,可得:由:及,并且取,由递归可得:(3)由于:因此,零状态是正常返的,由相通性,故所有状态都是正常返的,即此马氏链是不可约的。

(4)由马氏链的无后效性,可知此时的T 就是零状态到零状态的首达时间。

因此我们有:随机过程习题解答(二)P228/1。

证明:由于t s <,有{}{}{}{}{}n t N P k n s t N P k s N P n t N P n t N k s N P n t N k s N P =-=-⋅=========)(})({)()()(,)()(/)(其中{})()!())((!)(})({)(s t k n s k e k n s t e k s k n s t N P k s N P ------⋅=-=-⋅=λλλλ{}tn e n t n t N P λλ-==!)()(所以{}kn k k n k n k k tn s t k n s k k s k s k n k n k n t s t t s e n t e k n s t e k s n t N k s N P --------⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=--=--⋅===1)!(!!)(!)()!())((!)()(/)()(λλλλλλ证毕。

P229/3. 解:(1)因为}0),({≥t t N 是一Poission 过程,由母函数的定义,有:()()()()()())()(})({})({})({})({})({})({})({})({})({})({})({)()()(00000000)(s s s j t N P sl t N P s l k t N P sl t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P l t N P s k t N P s t N t N j jl ll k lk l ll lk l k l k kl l k l k k k l k kt t N ∆∞=∞=∞=-∞=∞=∞=-∞==-∞==∞=∆+ψ⋅ψ=⋅=∆⋅==⋅-=∆⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⋅⎥⎦⎤⎢⎣⎡-=∆⋅==⋅==ψ∑∑∑∑∑∑∑∑∑∑∑ (2)有上面(1)的结果,可得:ts s t s s s ts s ts t N t t N t N t N t N t t N t t N t t N ∆-ψ⋅ψ=∆ψ-ψ⋅ψ=∆ψ-ψ=∂ψ∂∆→∆∆→∆∆+→∆1)()()()()()()(ˆ)()(0)()()()(0)()(0)(limlimlim(3)当t ∆充分小时,由于:[][]∑∑∞=∞=∆⋅∆+⋅∆+∆+⋅∆+∆-=⋅=∆=ψ2100)()()()(1})({)(k kk kt N s t s t t s t t s s t N P s οολολ因此,当1<s 时,有:)1()()(1)(20)(0lim lim-=⋅∆∆+∆∆+∆+∆-=∆-ψ∑∞=→∆∆→∆s s tt t t s t t ts kk t t N t λοολλ由(2)的结果,我们有:)()1()()()(s s ts t N t N ψ-=∂ψ∂λP229/4. 解:(1)由上面3题的结果(3),我们有:t s t N N t N t N e s s s s t s )1()()0()()()(1)()()1()(-=ψ⇒⎪⎩⎪⎨⎧=ψψ-=∂ψ∂λλ (2)由于)()(s t N ψ是随机过程)(t N 的母函数,且t s t N e s )1()()(-=ψλ,将函数t s e )1(-λ关于)1(<s s 展开成级数形式,我们可得:∑∞=--⋅⋅==ψ0)1()(!)()(k kt k ts t N s e k t es λλλ由母函数与分布函数的唯一性定理,可得:2,1,0,!)(})({=⋅==-k e k t k t N P tk λλP230/8. 解:由特征函数的定义,我们有:{}{}[]{}{}()nY u i n tn Y Y Y u i n tn t X u i n t X u i t X e E e n t e E e n t n t N e E n t N P e E u n 1210)(0)()(!)(!)()(})({)(⋅⋅=⋅⋅==⋅===Φ∑∑∑∞=-++∞=-∞=λλλλ令{})(11u e E Y Y u i φ=,则有:[]{}1)(exp !))(()(110)(-=⋅=Φ∑∞=-u t e n u t u Y n t nY t X φλφλλ (*)若),2,1( =n Y n 的概率分布为:212211}1{,}1{λλλλλλ+=-=+==n n Y P Y P则{}u i u i Y u i Y e e e E u nn-⋅++⋅+==212211)(λλλλλλφ (**)将(**)代入(*),我们有:{}te t e t e e t u u i u i ui u i t X )(exp 1)(exp )(212121221121)(λλλλλλλλλλλλ+-+=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⋅++⋅++=Φ--P230/7. 解:先求}0),({0≥t t N 的特征函数:{}{}{}{}{}{}{}t et e t e e t e e t e m e t e n e t ee m t e e n t eE eE e E e E u ui u i tu i t u i m tmu i n t nu i mu i m t m n u i n t n t N u i t N u i t N t N u i t N u i t N )(exp exp exp !)(!)(!)(!)()(2121)(210)(201)(0201)()()())()(()()(212121212100λλλλλλλλλλλλλλλλ+-+=⋅⋅⋅=⋅⋅⋅=⋅⋅⋅⋅⋅=⋅===Φ----∞=--∞=--∞=-∞=---∑∑∑∑由上面8题的结果,根据特征函数与分布函数的唯一性定理,可知}0),({0≥t t N 是复合Poission 过程。

P231/10. 解:由于{}{}{}n t X t X t X P n t X t X t X j t X k t X P n t X t X t X j t X k t X P =++=++=====++==)()()()()()(,)(,)()()()()(,)(3213212132121因为)(t X i 的母函数为:{}t s s i t N )1(ex p )()(-=ψλ,由独立性,可知)()()(321t X t X t X ++的母函数为:()(){}∏=-++=ψ=ψ31321)()(1ex p )()(i t Xt X t s s s λλλ,所以)()()()(321t X t X t X t X ++=是参数为321λλλ++的泊松过程,即{}()()()tn en t n t X t X t X P 321!)()()(321321λλλλλλ++-++==++因此我们有:{}()()()()()()njk n j k tn tkj n tjtkj k n j k n en t ek j n t ej t ek t n t X t X t X j t X k t X P )()!(!!!!)!(!!)()()()(,)(32132132111132121321321λλλλλλλλλλλλλλλλλλ++⋅--=++--⋅⋅===++==--++------P231/12. 解:(1)由{}())(}1)({1})({}1)(,1)({}0)(,)({)(t o t P k t X P t P k t X P t X k t X P t X k t X P k t t X P r r ∆+∆-=+∆-==+=∆-=+=∆====∆+λλ 令0→∆t ,有)()()(1t P P t P P dtt dP k r k r k -=+λλ 解得{}tP k r r e k t P k t X P λλ-==!)()((2)由(1)知,)(t X 服从参数为r P λ的泊松分布。

相关主题