高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习一.轻绳模型1.轻绳模型的特点:“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子; ②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失; ④轻绳的弹力会发生突变。
3.绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物 例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 >F 2 >F 3D .F 1 =F 2 <F 31-1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( ) A.5 N B.10 N C.5 3 ND.10 3 N1-2.相距4m 的两根柱子上拴着一根长为5m 的细绳,细绳上有一小的清滑轮,吊着重为180N 的物体,不计摩擦,当系统平衡时,AO 绳和BO 绳受到的拉力T 为多少?如果将细绳一端的悬点B 向上移动些,二绳张力大小的变化情况是什么?(150N )(细绳绕过滑轮,相当于“活结”,也就是一根绳子,一根绳子的拉力处处相等。
)例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为 ( )A. mgB.33mg C. 21mg D. 41mg变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( )A .必定是OA B.必定是OBC .必定是OC D.可能是OB ,也可能是OC变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1 = 4Kg 和m 2 = 2Kg 的物体,如图所示。
在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。
(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。
) 例3:如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1,圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上,每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为( )A.1231G B.12)(321G G +C.8)(21G G + D.41G变式训练:三根不可伸长的相同的轻绳,一端系在半径为r 0的环1上,彼此间距相等,绳穿过半径为r 0的第2个圆环,另一端同样地系在半径为2r 0的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计)(立体图形和“活结”,立体图形和“死结”,你能分清吗?揭开神秘的面纱吧!) 例4:如左图,若已知物体A 的速度大小为v A ,求重物B 的速度大小?变式训练.如图所示,当小车A 以恒定的速度v 向左运动时,则对于B 物体来说,下列说法正确的是( ) A .加速上升 B .匀速上升C .B 物体受到的拉力大于B 物体受到的重力D .B 物体受到的拉力等于B 物体受到的重力(绳连动问题:需要搞清楚物体的速度和绳的速度之间的关系哟!) 例5:如图所示,在与水平方向夹角为θ的恒力F 的作用下,物体通过的位移为S ,则力F 做的功为多少?变式训练:一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图8-28所示:绳的P 端拴在车后的挂钩上,Q 端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经过B 驶向C .设A 到B 的距离也为H ,车经过B 点时的速度为vB .求车由A 移到B 的过程1 23中,绳Q端的拉力对物体做的功?(通过绳对物体做功:力对绳做了多少功,全部转化为对绳物体做的功。
)二.轻杆模型1.轻杆模型的特点:轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
2.轻杆模型的规律:①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
④杆对物体的力一般只能被动分析,而不能主动出击(即根据运动状态进行受力分析)3.有转轴的杆给物体的力一般沿着杆的方向并且通过转轴。
4.杆连动的处理思路与方法和处理绳连动的相同例1:如图所示,一根弹性杆的一端固定一个重力是2 N的小球,小球处于静止状态时,弹性杆对小球的弹力( )A.大小为2 N,方向平行于斜面向上B.大小为1 N,方向平行于斜面向上C.大小为2 N,方向垂直于斜面向上D.大小为2 N,方向竖直向上变式训练:如图所示,小车上固定一弯折硬杆ABC,杆C端固定一质量为m的小球,已知∠ABC= ,当小车以加速度a向左做匀加速直线运动时,杆C端对小球的作用力大小为多少。
(固定杆,也叫做没有转轴的轻杆,它给结点的力的方向怎么来确定呢??)例2:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的P点,整个系统处于平衡状态。
现把拴于墙上P点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?变式训练.的一端A固定在墙上,另一端通过固定在直杆BE的定滑轮C吊一重物,如图,杆BE可以绕B点转动。
杆、滑轮,绳的质量及摩擦均不计,设AC段绳的拉力为T,BE杆受的压力为F,把绳端A点墙稍向下移一微小距离,整个装置再一次平衡后有A T、F均增大B T先减小后增大、F增大C T不变、F增大D T、F均不变(具有转轴的杆,当它缓慢转动时,感受力的特点是什么?应该怎么处理呢?)例3:如图所示,轻杆的两端分别连着A 、B 两球,B 球处于水平地面,A 球靠在竖直墙壁上,由于地面打滑,B 球沿水平地面向左滑动,A 球靠着墙面向下滑。
某时,B 球滑到图示的位置,速度V B =10m /s ,则此时V A = m /s (sin370=0.6 cos37o =0.8 )变式训练.如图所示,一轻杆两端分别固定质量为mA 和mB 的两个小球A 和B (可视为质点)。
将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为VA ,求此时B 球的速度VB ?(杆连动问题:和绳连动问题有相似的地方吗?如果有,那就“移花接木”吧)例4:如图所示,一根轻质细杆的两端分别固定着A 、B 两只质量均为m 的小球,O 点是一光滑水平轴,已知AO=a ,BO=2a ,使细杆从水平位置由静止开始转动,当B 球转到O 点正下方时,它对细杆的拉力大小是多大?变式训练.如图14所示,A 、B 两小球用轻杆连接,A 球只能沿内壁光滑的竖直滑槽运动,B 球处于光滑水平面内.开始时杆竖直,A 、B 两球静止.由于微小的扰动,B 开始沿水平面向右运动.已知A 球的质量为m A ,B 球的质量为m B ,杆长为L .则:(1)A 球着地时的速度为多大?(2)A 球机械能最小时,水平面对B 球的支持力为多大?(3)若m A =m B ,当A 球机械能最小时,杆与竖直方向夹角的余弦值为多大?A 球机530B A V B V A械能的最小值为多大?(选水平面为参考平面)(杆连接的做功问题,杆的两端分别连接一个物体,做功有什么特点?)三.弹簧模型1.轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
2.轻弹簧的规律①轻弹簧各处受力相等,轻弹簧产生的弹力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反; ②弹力的大小为F=kx ,其中k 为弹簧的劲度系数,x 为弹簧的伸长量或缩短量; ③弹簧的弹力不会发生突变。
3.弹力做功与电场力、重力做功一样与过程没有关系,至于初末位置有关。
公式212p E kx在高中课本中没有出现过,所以一般不能直接用。
而是根据对称和类比的思想来解决问题。
例1:如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动. 若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 4(搞清楚弹簧的读数与弹簧受力的关系:如果弹簧测力计的读数为F ,那么弹簧两端受到力的大小都为F ) 例2:如图,a 、b 、c 为三个物块,M 、N 为两个轻弹簧,R 为跨过定滑轮的轻绳,系统静止,则下列说法中正确的有( )A.弹簧N 一定处于伸长状态B.弹簧N 可能处于原长状态C.弹簧M 一定处于压缩状态D.弹簧M 可能处于伸长状态变式训练:图所示,重为G 的质点P 与三根劲度系数相同的轻弹簧A 、B 、C 相连,C 处于竖直方向,静止时相邻弹簧间的夹角均为120°.已知弹簧A 、B 对质点P 的弹力大小各为G /2,弹簧C 对质点P 的弹力大小可能为( )F F F F F ① ② ③ ④A .3G /2B .G /2C .0D .3G[(弹簧既有可能被拉伸也有可能被压缩,全面的思维才是王道 !)例3:如图所示,质量为m 的物体被劲度系数为k 2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k 1的轻弹簧1,托住下弹簧的端点A 用力向上压,当弹簧2的弹力大小为mg /2时,弹簧1的下端点A 上移的高度是多少?变式训练:如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧A 、B 的劲度系数分别为k 1和k 2,若在m 1上再放一质量为m 0的物体,待整个系统平衡时,m 1下降的位移为多少?(弹簧的末端移动问题,末端移动量和每个弹簧的末端移动量有什么关系呢?能很好的用0,F k(l l ),F k F k x x =∆=-∆=∆这几个公式?)例4: 如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复。