第二节大气中污染物的迁移.
(3) 扩散参数的确定
P-G曲线法 Pasquill根据常规气象资料:风速、云量、云状和日照等, 将大气扩散稀释能力分为A、B、C、D、E、F六个稳定度 等级。 y z 与下风向距离x Gifford建立了不同稳定度等级下, 的函数关系,并绘制成P-G曲线图。见P52图2-26.
方法要点: 大气分成A---F共六个稳定度等级 (依据气象参数:云、日照、风速······) x--σ y曲线(六条),(分别对应A、B····F稳定度级)
扩散参数的确定-P-G曲线法
P-G曲线的应用 – 根据常规资料确定稳定度级别
扩散参数的确定-P-G曲线法
P-G曲线的应用 – 利用扩散曲线确定 y 和 z
四、影响大气污染物迁移的因素
大气污染迁 移的影响因素
影响 特征
风:是指空气水平方向的运动,风可使污染物向 下风向扩散; 湍流:是指空气不同与水平方向的次生运动,湍 流可使污染物向各方向扩散; 浓度梯度:可使污染物发生质量扩散。
1、概念������
������
指气层的稳定度,即大气中某一高度上的气块 在垂直方向上相对稳定的程度。
受密度层结和温度层结共同作用。
2大气稳定度状况
稳定的大气:当大气中某一气块在垂直方向上有一个小 的位移,如果层结大气使气块趋于回到原来的平衡位置, 则称层结是稳定的,Γd>Γa������ 不稳定的大气:如果层结大气使气块趋于继续离开原来 位置,则称层结是不稳定的,Γd<Γa������ ������ 中性的大气:介于上两者之间,Γd=Γa 研究大气垂直递减率,可用于判断,气块稳定情况,气 体垂直混合情况,考察污染物扩散情况。
三、大气污染数学模式
1.高架连续点源大气污染模式 (1)烟流模型基本公式 基本假定: – 坐标系(见p50图2-25) 右手坐标,y为横风向,z为垂直向 –四点假设 a.污染物浓度在y、z风向上分布为正态分布 b.全部高度风速均匀稳定 c.源强是连续均匀稳定的 d.扩散中污染物是守恒的(不考虑转化)
H—烟囱的有效高度(烟轴高度,由烟囱几何高度Hs和烟流抬升高度ΔH组成, 即H=Hs+ΔH),ΔH:烟囱顶距烟轴的距离,随x而变化的。
(2) 有效源高计算
有效源高H,系指烟流中心线距地面的高度;为烟囱
高度HS与烟羽抬升高度 △ H之和, H= HS+ △ H。
抬升高度△
H计算式:烟羽抬升主要取决于两个方面, 一是烟羽排出时的初始动量和浮力;二是周围大气的性质。 通常采用经验或半经验公式计算得到。
依正态分布假定和地面对烟流的反射作用,由全反射原理推 导可得出下风向任一点的浓度分布。
c —污染物浓度,g/m3 Q—源强, g/s;指污染物排放速率,与空气中污染物质的浓度成正比。 ū —烟囱高度处的平均风速,m/s; σy—侧向扩散参数,污染物在y方向分布的标准偏差,是距离y的函数,m; σz—竖向扩散参数,污染物在z方向分布的标准偏差,是距离z的函数,m;
动力条件
热力条件
辐射逆温
平流逆温
融雪逆温
乱流逆温 下沉逆温
地形逆温
锋面逆温
辐射逆温产生特点:
因地面强烈辐射冷却降温而形成。
该逆温层多发生在距地面100-150 m 高度内。
最有利于辐射逆温发展的条件是平静而晴朗 的夜晚。
云和风能减弱辐射逆温。 风速超过2-3 m/s,逆温就不易形成。
在对流层中,dT/dz<0,Γ=0.6K/100m,即每升高100m
气温降低0.6℃。������ 一定条件下出现反常现象: 当Γ=0 时,称为等温层;������ ������ 当Γ<0 时,称为逆温层。大气层稳定性强,对大气的垂 直运动起阻碍作用。
根据逆温形成的过程不同,可分为两种:
近地面层的逆温 自由大气层的逆于地表面温度与地表面附近
的温度不均一,近地面空气受热膨胀而上升,随之上面的 冷空气下降,从而形成对流。
在摩擦层内,有时以动力乱流为主,有时动力乱流与热力
乱流共存,且主次难分。这些都是使大气中污染物迁移的 主要原因。
气块在不同尺度湍涡下的扩散
气块尺度>湍涡尺度
a
湍涡尺度>气块尺度
b
气块尺度≈湍涡尺度
c
不同稳定度状况下的最大混合层高度
大气中,一理想的处于平衡状态的气块,受到周围大气 温差带来的浮力作用,产生向上(或向下)的加速度运动, 推导可得:
第二节 大气中污染物的迁移
大气中污染物的迁移是指从污染源排放出来的污染物
由于空气的运动使其传输和分散的过程. 污染物的迁移过程可导致污染物浓度降低.
主要内容: 辐射逆温层 大气稳定度 大气污染数学模式 影响大气污染物迁移的因素
一、辐射逆温层
对流层大气的重要热源是来自地面的长波辐射,故离 地面越近气温越高;离地面越远气温越低。 随高度升高气温的降低率称为大气垂直递减率:
大气中气块的两种不同性质的运动
摩擦层:在对流层中(1~2km以下),空气的水平运动 受地表的的机械摩擦、地表强烈的热力作用的影响而产生 乱流,该层又称为乱流混合层,摩擦层顶以上的气层称为 自由大气。
乱流的形成:
动力乱流(湍流) 乱流 热力乱流(对流)
动力乱流:有规律水平运动的气流遇到起伏不平的地形扰
辐射逆温:地面因强烈辐射作用而冷却降温形成的近 地面层大气逆温现象。 形成条件:白天日照强烈,夜间天空晴朗无风、无云。
ABC-白天温度层结曲线;FEC-夜间层结曲线;DBC-清晨层结曲线.
日出后地面温度上升, 逆温层近地面处首先破坏, 自 下而上逐渐变薄,最后消失。
二、大气稳定度
Holland公式:
Vs实际状态烟流出口速度,m/s; d烟囱出口直径,m; Ts Ta分别是烟气出口温度和环境大气温度,K; P大气压,Pa;
Qh烟气热释放率,J/s,单位时间排出烟气的热量;
ū烟囱口高度处的平均风速,m/s Holland公式比较保守,适用于中性大气条件,特 别在烟囱高、热释放率比较强的情况下。 Holland建 议稳定时减小10%~20% ,不稳时增加10%~20%。