当前位置:文档之家› 潮流计算的计算机算法

潮流计算的计算机算法

第四章潮流计算的计算机算法第一节概述潮流计算是电力系统最基本、最常用的计算。

根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值及相角),各元件中流过的功率、整个系统的功率损耗等。

潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。

因此潮流计算在电力系统的规划设计、生产运行、调度管理及科学研究中都有着广泛的应用。

电力系统潮流计算分为离线潮流计算和在线潮流计算。

前者主要用于系统规划设计和安排系统的运行方式,后者则用于正在运行系统的经常监视及实时控制。

本章主要讨论离线潮流计算问题,它的基本算法同样适用于在线潮流计算。

潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。

自从五十年代计算机应用于电力系统以来,当时求解潮流的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛性较差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。

到六十年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊(Newton-Raphson)法。

Newton —Raphson法是数学上解非线形方程式的有效方法,有较好的收敛性。

将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使N-R法在收敛性、占用内存、计算速度方面的优点都超过了阻抗法,成为六十年代末期以后普遍采用的方法。

同时国内外广泛研究了诸如非线形规划法、直流法、交流法等各种不同的潮流计算方法。

七十年代以来,又涌现出了更新的潮流计算方法。

其中有1974年由B、Stott、O、Alsac 提出的快速分解法以及1978年由岩本伸一等提出的保留非线性的高129速潮流计算法。

其中快速分解法(Fast decoupled load flow)从1975年开始已在国内使用,并习惯称之为PQ分解法。

由于PQ分解法在计算速度上大大超过N-R法,不但能应用于离线潮流计算,而且也能应用于在线潮流计算。

本章主要介绍最常用的N—R法和PQ分解两种潮流计算的计算机算法的原理框图及程序。

第二节潮流计算的基本方程一、节点的分类用一般的电路理论求解网络方程,目的是给出电压源(或电流源)研究网络内的电流(或电压)分布:作为基础的方程式,一般用线性代数方程式表示。

然而在电力系统中,给出发电机或负荷连接母线上电压或电流(都是向量)的情况是很少的,一般是给出发电机母线上发电机的有功功率(P)和母线电压的幅值(V),给出负荷母线上负荷消耗的有功功率(P)和无功功率(Q)。

我们的目的是由这此已知量去求电力系统内的各种电气量。

所以,根据电力系统中各节点性质的不同,很自然地把节点分成三种类型。

1、PQ节点这一类节点,我们事先给定的是节点功率(P、Q),待求的未知量是节点电压向量(V、θ)。

所以叫“PQ节点”。

通常变电所母线都是PQ节点。

当某些发电机的出力P、Q给定时,也作为PQ节点。

PQ节点上的发电机称之为PQ机(或PQ给定型发电机。

在潮流计算中,系统大部分节点属于PQ节点)。

2、PV节点这类节点给出的参数是该节点的有功功率P及电压幅值V,待求量为该节点的无功功率Q及电压向量的相角θ。

这种节点在运行中往往要有一定可调节的无功电源,用以维持给定的电压值。

通常选择有一定无功功率贮备的发电机母线或者变电所有无功补偿设备的母130线作PV节点处理。

PV节点上的发电机称之为PV机(或PV给定型发电机)。

3、平衡节点在潮流计算中,这类节点一般只设一个。

对该节点,给定其电压值,并在计算中取该节点电压向量的方向作为参考轴,相当于给定该点电压向量的角度为零。

也就是说,对平衡节点给定的运行参数是V 和θ,因此又称为Vθ节点,而待求量是该节点的P、Q,整个系统的功率平衡由这一节点承担。

关于平衡节点的选择,一般选择系统中担任调频调压的某一发电厂(或发电机)。

有时也可能按其它原则选择,例如,为提高计算的收敛性,可以选择出线数多或者靠近电网中心的发电厂母线作平衡节点。

以上三种节点四个运行参数P、Q、V、θ中已知量都是两个,待求量也是两个,只是类型不同而已。

二、基本方程式在潮流问题中,任何复杂的电力系统都可以归结为以下元件(参数)组成:(1)发电机(住入电流或功率)(2)负荷(负的注入电流或功率)(3)输电线支路(电阻、电抗)(4)变压器支路(电阻、电抗、变比)(5)母线上的对地支路(阻抗和导纳)(6)线路上的对地支路(一般为线路充电电容导纳)集中了以上各种类型的元件的简单网络如图4-1(a)所示。

131132必须指出,如果仅研究稳态情况下的潮流而不涉及暂态过程的计算则不需要发电机和负荷的阻抗参数,只需要给出发电机和负荷的注入功率或电流,并且规定发电机和负荷的注入功率或电流取正,而负荷取负。

将图4—1(a )中的发电机和负荷节点用无阻抗线从网络中抽出(为不失一般性,将既非发电机又非负荷的浮动节点当作零注入功率的母线抽出网络之外),剩下的部分即由接地和不接地支路组成一个无源线性网络(图4-1(b ))对于这个无源线性网络可用相应的导纳矩阵(或阻抗矩阵)来描述,采用导纳矩阵焊时,节点注入电流和节点电压构成以下线性方程组YV I =P g1+jQ g11I •P g2+jQ g22I •0+j0 3I •4I •-P R4-jQ R4 5I •-P R5-jQ R5 6I •-P R6-jQ R6无源线性网络(可用导纳 矩阵或阻抗 矩阵表示)图4-1(b )潮流计算等值网络③ ④⑤① ⑥ ②133其中 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321I I I I &&& ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321V V V V &&&可展开为如下形式:⎪⎭⎫ ⎝⎛===∑n , , 2 , 1i Y 1ΛΛΛΛΛΛ&&j nj ij i V I (4-1) 若 ZI V = 可展开如下形式:()n , , 2 , 1i Z 1ΛΛΛΛΛΛ&&==∑=nj j ij i I V (4-2) 式中n 为网络节点数由于实际电网中测量的节点注入量一般不是电流而功率,因此必须将式(4-1)中的注入电流I &用节点注入功率来表示。

根据电工理论,节点功率与节点电流之间的关系为:*=+=ii i i i I V &jQ P S (4-3) 式中 LDi Gi i P P P -= LDi Gi i Q Q Q -=因此用导纳矩阵(4-1)式时,PQ 节点可以表示为***==ii i i i i V V S I jQ -P & (4-4) 把帝个关系式代入式(4-1)中,得()n , , ,2 1i jQ P 1ΛΛΛΛΛΛ&==-∑=*nj jij iii V Y V (4-5) 比较式(4-1)和(4-5),由于功率代替电流的结果,使式(4-1)电流电压的线性方程组变量为功率和电压的非线性方程组,这134个非线性方程组就是潮流计算的基本方程。

式(4-5)是一组共有n 个非线性方程组成的复数方程式,如果把实部和虚部分开便得到2n 个实数方程,因此由该方程组可解出2n 个运行参数。

但是我们知道每一个节点都有4 个运行变量,即:节点的功率P i 、Q i ,以及节点电压的幅值和相位(或对应于某一选定参考直角坐标的实部和虚部)。

记作(P i 、Q i 、V i 、θi )或(P i 、Q i 、e i 、fi ),当节点数为n 时,则共有4n 个运行参数。

由2n 个方程式要求出4n 个运行参数是不可能的,只能求出2n 个运行参数,而其余2n 个应作为原始数据事先给定。

这就得根据节点的分类,对每个节点的4个运行参数中的两个作为原始数据,而另外两个则作为待求量。

第三节 牛顿-拉夫逊法潮流计算一、 牛顿-拉夫逊法概要首先对一般的牛顿-拉夫逊法作一简单说明。

已知一个变量X 的函数()0X f = (4-6) 解此方程式时,由适当的近似值X()出发,根据()()()()()()() , ,2 1n XX XX'1ΛΛΛΛΛΛ=-=+n n n n f f (4-7)反复进行计算,当X (n )满足适当的收敛判定条件时就是(4-6)式的根。

这样的方法就是所谓的牛顿-拉夫逊法。

式(4-7)就是取第n 次近似解X (n )在曲线()X f y =上的点()()()[]nnX f , X 处的切线与X 轴的交点作下一次X(n+1)值的方法。

参考图4-2(a )。

在这一方法中为了能收敛于真解,初值X (0)的选取及函数f (X )必须满足适当的条件,如图4-2(b )所示的那种情况就不能收敛或收敛到别的根上去。

这一方法还可以做下面的解释,设第n 次迭代得到的解与真值之135差,即)(n X的误差为ε时,则0)()(=+εn X f (4—8)把)()(ε=n X f 在)(n X 附近对ε用泰勒级数展开 0)(!2)()()()(''2)(')()(=++++=+ΛΛn n n n X f Xf Xf Xf εεε (4—9)上式略去2ε以下的项0)()()(')(≈+n n X f X f ε (4—10))(n X 的误差可近似由上式计算出来图4-2)()()(')(n n X f X f -≈ε (4—11)比较式(4—7)和(4—11),可以看出牛顿—拉夫逊法的修正量和)(n x 的误差的一次项相等。

用同样的方法考虑,给出对n 个变量n 21X , ,X ,X ΛΛΛ的n 个方程式()()()⎪⎪⎩⎪⎪⎨⎧===0X , X , X f 0X , X , X f 0X , X , X f n 21n n212n 211ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (4-12)对其近似解'n'2'1X , , X , ΛΛΛΛΛΛX 的修正量n 21X , ,X , X ∆∆∆ΛΛ,可以解下面的方程式来确定xX (t+1)X (t))1(+∆n x136()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡n 21n n 2n 1n n 22212n 12111'n '2'1'n'2'12'n '2'11X X X x f x f x f x f x f x f x f x f x f X , X , X fn X , X , X f X , X , X f M M ΛΛM ΛΛΛΛΛΛM M ΛΛΛΛ (4-13) 式(4-13)的右边的矩阵的jix f ∂∂等都是对于'n '2'1X , , X , ΛΛX 的值。

相关主题