磁 场第1、2课时 磁场、磁场对电流的作用授课时间:考点1.磁场的基本概念1. 磁体的周围存在磁场。
2. 电流的周围也存在磁场3. 变化的电场在周围空间产生磁场(麦克斯韦)。
4. 磁场和电场一样,也是一种特殊物质5. 磁场不仅对磁极产生力的作用, 对电流也产生力的作用.6. 磁场的方向——在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点的磁场方向.7. 磁现象的电本质:磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的. 考点2.磁场的基本性质磁场对放入其中的磁极或电流有磁场力的作用.(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
1. 磁极和磁极之间有磁场力的作用2. 两条平行直导线,当通以相同方向的电流时,它们相互吸引,当通以相反方向的电流时,它们相互排斥3. 电流和电流之间,就像磁极和磁极之间一样,也会通过磁场发生相互作用.4. 磁体或电流在其周围空间里产生磁场,而磁场对处在它里面的磁极或电流有磁场力的作用.5. 磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场来传递的 考点3。
磁感应强度(矢量)1.在磁场中垂直于磁场方向的通电导线,所受的安培力F 安跟电流I 和导线长度L 的乘积IL 的比值叫做磁感应强度lI F B 安=,(B ⊥L ,LI 小)2.磁感应强度的单位:特斯拉,简称特,国际符号是T mA N 1T 1⋅=3.磁感应强度的方向: 就是磁场的方向. 小磁针静止时北极所指的方向,就是那一点的磁场方向.磁感线上各点的切线方向就是这点的磁场的方向.也就是这点的磁感应强度的方向.4.磁感应强度的叠加——类似于电场的叠加。
考点4.磁感线1.是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上.磁感线的分布可以形象地表示出磁场的强弱和方向.2.磁感线上各点的切线方向就是这点的磁场的方向. 也就是这点的磁感应强度的方向.3.磁感线的密疏表示磁场的大小.在同一个磁场的磁感线分布图上,磁感线越密的地方,表示那里的磁感应强度越大.4.磁感线都是闭合曲线,磁场中的磁感线不相交.考点5.电流周围的磁感应线1.直线电流的磁感应线:直线电流的磁感线方向用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向(即正电荷定向运动方向或与负电荷定向运动方向相反)一致,弯曲的四指所指的方向就是磁感线的环绕方向.2.通电螺线管的磁感线:通电螺线管的磁感线方向—也可用安培定则来判定:用右手握住螺线管.让弯曲的四指所指的方向跟电流的方向一致.大拇指所指的方向就是螺线管内部磁感线的方向.也就是说,大拇指指向通电螺线管的北极.(通电螺线管外部的磁感线和条形磁铁外部的磁感线相似)考点6.磁通量1.磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量Φ①S与B垂直:Φ=BS ②S与B平行:Φ=0 ③S与B夹角为θ:Φ=BS⊥=BSsinθ2.磁通量的单位:韦伯,符号是Wb.1Wb=1Tm23.磁通量的意义:磁通量表示穿过某一面积的磁感线条数多少。
4. 磁通密度: 从Φ=BS可以得出B=Φ/S ,这表示磁感应强度等于穿过单位面积的磁通量,因此常把磁感应强叫做磁通密度,并且用Wb/m2作单位.1T=1 Wb/m2=1N/A•m5.磁通量是标量,但是有正负.如果将从平面某一侧穿入的磁通量为正, 则从平面反一侧穿入的磁通量为负.考点7.安培力的大小:在匀强磁场中,在通电直导线与磁场方向垂直的情况下,电流所受的安培力F安等于磁感应强度B、电流I和导线长度L三者的乘积. F安=BIL 通电导线方向与磁场方向成θ角时,F 安=BILsinθ1.当I⊥B时(θ=90°),Fmax=BIL;2.当I∥B时(θ= 0°),Fmin= 0 ;安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。
②L是有效长度,不一定是导线的实际长度。
*弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0考点8.安培力的方向1.左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向.2.安培力方向的特点:总是垂直于B和I所决定的平面,即F安⊥B且F安⊥I(但B、L不一定垂直)。
(1)已知B和I的方向,可用左手定则唯一确定F安的方向;(2)已知B和F安的方向,当导线的位置确定时,可唯一确定I的方向;(3)已知I和F安的方向,不能唯一确定B的方向;考点9.磁电式电流表的工作原理由于这种磁场的方向总是沿着径向均匀地分布的,在距轴线等距离处的磁感应强度的大小总是相等的,这样不管线圈转到什么位置,线圈平面总是跟它所在位置的磁感线平行,I与指针偏角θ成正比,I越大指针偏角越大,因而电流表可以量出电流I的大小,且刻度是均匀的,当线圈中的电流方向改变时,安培力的方向随着改变,指针偏转方向也随着改变,又可知道被测电流的方向。
第3、4课时磁场、磁场对电流的作用授课时间:基础过关重难点:磁感应强度基本概念例.关于磁感应强度,下列说法正确的是()A、一小段通电导线放在B为零的位置,那么它受到的磁场力也一定为零B、通电导线所受的磁场力为零,该处的磁感应强度也一定为零C、放置在磁场中1m长的通电导线,通过1A的电流,受到的磁场力为1N,则该处的磁感应强度就是1TD、磁场中某处的B的方向跟电流在该处受到磁场力F的方向相同解析:A选项根据磁感应强度的定义A选项对。
B选项通电导线(电流I)与磁场平行时,磁场力为零。
B选项错。
C选项通电导线(电流I)与磁场垂直。
C选项错。
D选项B与F方向一定垂直D选项错。
答案:A典型例题:渡河问题(原创)例4.如图所示,一水平导轨处于与水平方向成45°角向左上方的匀强磁场中,一根通有恒定电流的金属棒,由于受到安培力作用而在粗糙的导轨上向右做匀速运动。
现将磁场方向沿顺时针缓慢转动至竖直向上,在此过程中,金属棒始终保持匀速运动,已知棒与导轨间动摩擦因数μ<1,则磁感应强度B的大小变化情况是( )A.不变 B.一直增大 C.一直减小 D.先变小后变大解析:答案:D点评:正确的受力分析、建立直角坐标系、列举方程利用数学关系求解是解决此题的关键。
例5.据报道,最近已研制出一种可投入使用的电磁轨道炮,其原理如图所示。
炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接。
开始时炮弹在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出。
设两导轨之间的距离w=0.10m ,导轨长L=5.0m ,炮弹质量m =0.30kg 。
导轨上的电流I 的方向如图中箭头所示。
可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B =2.0T ,方向垂直于纸面向里。
若炮弹出口速度为v =2.0×103m/s ,求通过导轨的电流I 。
忽略摩擦力与重力的影响。
解析:答案:A 1065⨯=I点评:此题也可以利用动能定理求解021:2-=∙mvL BIW 对此过程动能定理第5课时 磁场对运动电荷的作用考点1.洛伦兹力1. 定义:磁场对运动电荷受到的作用力叫做洛伦兹力.2. 大小:F 洛=qvBsin θ ,(θ为B 与v 的夹角)(1)当v ⊥B 时,F 洛max=qvB;(2)当v ∥B 时,F 洛min=0 ;3. 洛伦兹力的方向:由左手定则判断。
注意:① 洛伦兹力一定垂直于B 和v 所决定的平面(因为它由B 、V 决定)即F 洛⊥B 且F 洛⊥V;但是B 与V 不一定垂直(因为它们由自身决定) ②四指的指向是正电荷的运动方向或负电荷运动的反方向4. 特点:洛伦兹力对电荷不做功,它只改变运动电荷速度的方向,不改变速度的大小。
原因: F 洛⊥V5. 洛伦兹力和安培力的关系:F 洛是F 安的微观解释,F 安是F 洛宏观体现。
考点2:带电粒子在磁场中的圆周运动1.若v ∥B ,则F 洛=0,带电粒子以速度v 做匀速直线运动.2.若v ⊥B ,则带电粒子在垂直于磁感应线的平面内以入射速度v 做匀速圆周运动. (1) 洛伦兹力充当向心力:rmv qvB 2=(2)轨道半径:qBmE qBp qBmv r K 2===(3)周 期: qBm vr T ππ22==(4)角 速 度:mqB ω=(5)频 率:mqB Tf π21==(6)动 能: m(qBr)mvE k 22122==第6、7课时带电粒子在有界磁场中的运动 例.如图,L1和L2为两平行的虚线,L1上方和L2下方都是垂直纸面向里的相同匀强磁场,A 、B 两点都在L2上。
带电粒子从A 点以初速度v 与L2成30°角斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上成30°角,不计重力,下列说法中正确的是( ) A .带电粒子经过B 点时速度一定跟在A 点时速度相同B .若将带电粒子在A 点时的初速度变大(方向不变),它仍能经过B 点C .若将带电粒子在A 点时的初速度方向改为与L2成60°角斜向上,它就不一定经过B 点D .此粒子一定带正电荷解析:A 选项:据题意“带电粒子从A 点以初速度v 与L2成30°角斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上成30°角,不计重力”可以画出粒子运动的轨迹示意图如下(假设带正电)。
由图可知A 1A 2=B 1B=R , A 1A 2B 1B 为平行四边形d d AB 3230tan 2=︒⨯=B 选项:如果速度的大小变化, d d AB 3230tan 2=︒⨯=则r 变化但AB 不变,所以粒子仍从B 点射出C 选项:如果速度的方向变化虽然AB 有变化,但在一个完整的周期内3260,tan 2d x ,d x =∆︒==∆时θθ,33232==∆d d xD说明粒子运动三个完整的周期仍从B 点射出,正确选项是AB 答案:AB点评:注意此类问题画图是关键。
典型例题:(改编)例4.如图所示,在坐标系xoy 中,过原点的直线OC 与x 轴正向的夹角ψ=120°,在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里.一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍.粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场.已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:(1)粒子经过A 点时速度的方向和A 点到x 轴的距离;(2)粒子两次经过O 点的时间间隔;(3)匀强电场的大小和方向.点评:第8、9课时 带电粒子在复合场中的运动知识:带电粒子在重力场、电场、磁场中的运动例.07南京检测15如图所示,坐标系xOy 位于竖直平面内,在该区域内有场强E =12N/C 、方向沿x 轴正方向的匀强电场和磁感应强度大小为B =2T 、沿水平方向且垂直于xOy 平面指向纸里的匀强磁场.一个质量m =4×10-5kg ,电量q =2.5×10-5C 带正电的微粒,在xOy 平面内做匀速直线运动,运动到原点O 时,撤去磁场,经一段时间后,带电微粒运动到了x 轴上的P 点.取g =10 m/s 2,求:(1)P 点到原点O 的距离;(2)带电微粒由原点O 运动到P 点的时间.解析:微粒运动到O 点之前受到重力、电场力和洛伦兹力作用,在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得F B 2= F E 2+(mg)2① 电场力 F E =Eq =3×10-4N 重力mg= 4×10-4N ②洛伦兹力 F B =Bqv =5×10-4N ③ 联立求解、代入数据得 v=10m/s ④微粒运动到O 点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,且方向与微粒在O 点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动,可沿初速度方向和合力方向进行分解.⑤mgF E =θtan 代入数据得:43tan =θ设沿初速度方向的位移为s 1,沿合力方向的位移为s 2 ,如图示:因为 s 1 =v t ⑦⑧2222)(21t mmg F s E +=, ⑨θcos 1s OP =联立求解,代入数据可得P 点到原点O 的距离:OP =15m ⑩ O 点到P 点运动时间 t =1.2s ⑾ 答案:⑪OP =15m ⑫t =1.2s2、知识网络考点1.带电粒子在复合场中的运动1.带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。