当前位置:
文档之家› 浙江大学自动控制原理课第二章控制系统的数学模型
浙江大学自动控制原理课第二章控制系统的数学模型
自动控制理论
➢ 直流他励电动机 被控制量是电动机的转速n 。 控制量:发电机的电动势EG和负载转矩TL
由基尔霍夫定律和牛顿第二定律得
ia R L
dia dt
Cen
EG
GD2 dn Te TL 375 dt
Te Cuia
2020/4/27
第二章 控制系统的数学模型
10
上式中消去中间变量 Te和ia 后得到
的转速n为系统的输出量,经消元后得
τm τa τG
d 3n dt 3
τm
τa
τG
d 2n dt 2
τG
τm
dn dt
1
Ka Ce
n
K Ce
Ug
R CeCu
τGτa
d 2TL dt 2
τa
TG
dTL dt
TL
式中, K K1K 2 , R R G R m
2020/4/27
用解析法建立系统微分方程的一般步骤
➢ 根据基本的物理定律,列写出系统中一个元件的输入与输出的微分方程式 ➢ 确定系统的输入量与输出量,消去其余的中间变量,求得系统输出与输入的 微分方程式
举例
一、电气网络系统
例2-1求Uc与Ur的微分方程 式
解:由基尔霍夫定律得
iR
l
di dt
uc
ur
uc
1 C
idt,
设一非线性元件的输入为x、输出为y,它们间的 关系如图2-9所示,相应的数学表达式为
2020/4/27
y=f(x)
(2-13)
图 2-9 非线性特性的线性化
第二章 控制系统的数学模型
13
自动控制理论
在给定工作点A(x0,y0)附近,将上式展开为泰勒级数
y
f x
f
x0
df dx
1 d2f
xx0 x x0 2! dx2
uc
ur
2020/4/27
第二章 控制系统的数学模型
4
自动控制理论
二、机械位移系统
例2-3. 求外力F(t)与质量块m位移y(t)之间的微分方程 解 由牛顿第二定律列出方程
F (t) ky(t)
f
dy (t ) dt
m
d
2 y(t) dt 2
即 m d 2 y(t) f dy(t) ky(t) F (t)
2020/4/27
第二章 控制系统的数学模型
7
自动控制理论
➢ 放大器
u1 ue
K1
(2-4)
➢ 直流他励发电机
假设驱动发电机的转速n0恒定不变,发 电 机没有磁滞回线和剩磁,发电机的磁 化曲线为一直线 ,即Φ/iB =L。
图2-6 直流他励发电机电路图
2020/4/27
第二章 控制系统的数学模型
1
1
C2 i2dt i2 R2 C1 (i1 i2 )dt
1
C2
i2dt uc
消去中间变量i1 、 i2 得
i1
图2-2 R-C滤波网络
R1R2C1C2
d 2uc dt 2
R1C1 R2C2 R1C2
duc dt
uc
ur
或写作
T1T2
d 2uc dt 2
T1 T2
T3
duc dt
普通高等教育“九五”部级重点教 材
自动控制理论
第二章
控制系统的数学模型
2020/4/27
作者: 浙江大学 邹伯敏 教授
第二章 控制系统的数学模型
1
自动控制理论
数学模型:是描述系统输入、输出变量以及于内部其它变 量之间关系的数学表达式
描述系统运动的数学模型的方法
➢ 输入-输出描述 微分方程是这种描述的最基本形式。传递函数、方框图
第二章 控制系统的数学模型
(2-12)
12
自动控制理论
第二节 非线性数学模型的线性化
非线性数学模型线性化的假设
➢ 变量对于平衡工作点的偏离较小 ➢ 非线性函数不仅连续,而且其多阶导数均存在
微偏法
在给定工作点邻域将此非线性函数展开成泰勒级数,并略去二阶及二阶以 上的各项,用所得的线性化方程代替原有的非线性方程。
输入量是电动机的转速n,输出量是测速发电机的电压Ufn ,假设 测速发电机的磁场恒定不变,则Ufn与n成线性关系即有
2020/4/27
第二章 控制系统的数学模型
11
自动控制理论
ufn an 而
(2-10)
ue ug -ufn
(2 -11)
引起系统运动的输入量是给定电压ug和负载转矩TL(扰动),电动机
m a
d 2n dt 2
m
dn dt
n
1 Ce
EG
R CeCu
TL
a
dTL dt
(2-8)
式中, m
GD2 375
R Cu
为电动机的机电时间常数;
a
L R
为电动机的电气时间常数。
当TL 0时,电动机空载运行至稳态时,式2 8 便蜕化为
n0
1 Ce
EG
(n0为电动机的空载转速)
(2-9)
➢ 测速发电机
8
自动控制理论
由电机学原理得:
L
diB dt
iB R
U1
(2-5)
EG C1 C1LiB C2iB (2-6)
把式(2-6)代入(2-5),则得
τG
dEG dt
EG
K2U1
(2-7)
式中
G
L R
;
K2
C1L R
图2-7 直流他励电动机电路图
2020/4/27
第二章 控制系统的数学模型
9
2020/4/27
第二章 控制系统的数学模型
6
图2-5 G-M 直流调速系统的框图
写微分方程式的一般步骤:
列写元件和系统方程式前,首先要明确谁是输入量和输出量,把与
输出量有关的项写在方程式等号的左方,与输入量有,关系的项写
在等号的右方,列写系统中各元件输入-输出微分方程式,消去中
间变量,求得系统的输出与输入的微分方程式
dt 2
dt
图2-3 弹簧-质量-阻尼器系统
式中,f——为阻尼第数;k——为弹簧的弹性系数。k y(t)——弹性拉力 f dy ——阻尼器阻力
dt
2020/4/27
第二章 控制系统的数学模型
5
自动控制理论
三、直流调速系统
例2-4. 试写出图2-4所示直流调速系统的微分方程式
图2-4 G-M 直流调速系统原理图
等其它模型均由它而导出 ➢状态变量描述 状态方程是这种描述的最基本形式
建立系统数学模型的方法
➢ 实验法:人为施加某种测试信号,记录基本输出响应。
➢ 解析法:根据系统及元件各变量之间所遵循的基本物理
定律,列写处每一个元件的输入-输出关系式。
2020/4/27
第二章 控制系统的数学模型
2
自动控制理论
第一节 列写系统微分方程的一般方法
即i C duc dt
消去中间变量 i,则有:
LC
d 2uc dt 2
RC
duc dt
uc
ur
2020/4/27 图2-1 R-L-C电路 第二章 控制系统的数学模型
3
自动控制理论
例2-2. 试写出图2-2电路的微分方程
解 由基尔霍夫定律列出下列方程组
1
C1
(i1 i2 )dt i1R1 ur