1. 傅里叶变换有限长序列 可看成周期序列的一个周期; 把 看成 的以N 为周期的周期延拓。
有限长序列的离散傅里叶变换(DFT ):① 长度为N 的有限长序列 x(n) ,其离散傅里叶变换 X(k) 仍是一个长度为N 的有限长序列;② x(n)与X(k)是一个有限长序列离散傅里叶变换对,已知x(n) 就能唯一地确定 X(k);同样已知X(k)也就唯一地确定x(n)。
实际上x(n)与 X(k) 都是长度为 N 的序列(复序列)都有N 个独立值,因而具有等量的信息; ③ 有限长序列隐含着周期性。
)(n x )(n x )(~n x )(~n x ⎩⎨⎧===)())(()()(~)())(()(~n R n x n R n x n x n x n x N N N N ⎪⎪⎩⎪⎪⎨⎧====∑∑-=--=101)(1)]([)()()]([)(N k nk NN n nk NW k X N k X IDFT n x W n x n x DFT k X2.循环卷积(有可能会让画出卷积过程或结果)循环卷积过程为:最后结果为:3.(见课本)课本3、线性卷积(有可能会让画出卷积过程或结果)以下为PPT上的相关题目:4.计算分段卷积:重叠相加法和重叠保留法(一定会考一种)重叠相加法解题基本步骤:将长序列均匀分段,每段长度为M;基于DFT快速卷积法,通过循环卷积求每一段的线性卷积;依次将相邻两段的卷积的N-1个重叠点相加,得到最终的卷积结果。
4.级联、并联、直接形(画图) 以下为课后作业相关题目:1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(-+--n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
解: 将原式移项得)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y将上式进行Z 变换, 得到121)(31)()(81)(43)(---+=+-zz X z X z z Y z z Y z Y21181431311)(---+-+=z z z z H(1) 按照系统函数H(z), 根据Masson 公式, 画出直接型结构如题1解图(一)所示。
(2) 将H (z )的分母进行因式分解:)411)(211(31181431311)(111211--------+=+-+=z z z z z z z H按照上式可以有两种级联型结构:画出级联型结构如题1解图(二)(a)所示画出级联型结构如题1解图(二)(b)所示(3) 将H (z )进行部分分式展开:)411)(211(311)(111-----+=z z z z H 4121)41)(21(31)(-+-=--+=z B z A z z z zz H413721310)(---=z z zz H 11411372113104137)21(310)(----+-=---=z z z z z z z H1114111211311)(----⋅-+=z z z z H 111411311 2111)(----+⋅-=z z z z H 111411311 2111)(----+⋅-=z z z z H根据上式画出并联型结构如题1解图(三)所示。
3. 设系统的差分方程为y(n)=(a+b)y(n-1)-aby(n-2)+x(n-2)+(a+b)x(n-1)+ab式中, |a|<1,|b|<1, x(n)和y(n)分别表示系统的输入和输出信号, 试画出系统的直接型和级联型结构。
解:(1) 直接型结构。
将差分方程进行Z变换,得到Y(z)=(a+b)Y(z)z-1-abY(z)z-2+X(z)z-2-(a+b)X(z)z-1+ab2121)(1)()()()(-----+-++-==abzzbazzbaabzXzYzH按照Masson公式画出直接型结构如题3解图(一)所示。
(2) 级联型结构。
将H(z)的分子和分母进行因式分解,得到)()()1)(1())(()(211111zHzHbzazzbzazH=----=----按照上式可以有两种级联型结构:①画出级联型结构如题3解图(二)(a)所示画出级联型结构如题3解图(二)(b)所示1111)(----=azazzH1121)(----=bzbzzH1111)(----=bzazzH1121)(----=azbzzH四.设计模拟滤波器(考试时不能编代码) 一般步骤:根据A p 、A s 、Ωs 、Ωp ,确定滤波器阶次N 和截止频率Ωc 。
P161 【例6.2.2】设计一个模拟低通巴特沃斯滤波器,指标如下:(1) 通带截止频率:Ωp=0.2π;通带最大衰减:A p=7 dB 。
(2) 阻带截止频率:Ωs=0.3π;阻带最小衰减:A s=16dB 。
解:由Ωp ,得:由Ωs ,得:在上面两个Ωc 之间选Ωc=0.5。
最后可得(级联型) :五、脉冲响应不变法(P177 第6.3节) 156-158页脉冲响应不变法的优点:● 时域逼近。
使数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,即时域逼近良好。
● 线性频率关系。
⎡⎤379.2)3.0/2.0lg(2)]110/()110lg[(6.17.0==⎥⎥⎤⎢⎢⎡--=ππN 4985.01102.067.0=-=πc Q 5122.01103.066.1=-=πc Q )25.05.0)(5.0(125.0)(2+++=s s s s H a模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。
脉冲响应不变法的缺点:混叠失真效应因此,只适用于限带的模拟滤波器(例如衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小;而对于高通和带阻滤波器,由于它们在高频部分不衰减,因此会产生混叠现象。
六、双线性变换法七,与实验相关本题中老师会给出类似于下列表达式的信号:要求用脉冲相应不变法或双线性法编写主要的代码(如下面代码)来达到滤除其中的部分信号,并画出你所设计的滤波器的频响曲线,并标明Ωs 、Ωp ,以及滤波后信号的时域波形(波形中要体现相位特征)。
1)脉冲响应不变法滤除第三个信号: Fs=256; % 采样频率 fp=60; % 通带截止频率 fs=70; % 阻带截止频率 Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; %临界频率采用角频率表示 Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示 OmegaP=Wp*Fs; OmegaS=Ws*Fs;[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s'); [b,a]=butter(n,Wc,'s');[Bz,Az]=impinvar(b,a,Fs); 2)双线性法滤除第三个信号: Fs=256; % 采样频率 fp=60; % 通带截止频率 fs=70; % 阻带截止频率 Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; % 临界频率采用角频率表示 Ws=(fs/Fs)*2*pi; % 临界频率采用角频率表示 OmegaP=2*Fs*tan(Wp/2); % 频率预畸 OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s'); [b,a]=butter(n,Wc,'s');()cos(250/180)cos 23 1.5(275/180090)3S t t t ππππ=+⨯+⨯--[Bz,Az]=bilinear(b,a,Fs);注:要好好看实验中关于低通,高通,带通,带阻的设计代码。
带通:fp1=40; % 通带截止频率 fs1=30; % 阻带截止频率 fp2=60; % 通带截止频率 fs2=70; % 阻带截止频率 Rp=1; Rs=25; Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi; Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; % 向量 Ws=[Ws1,Ws2]; % 向量带阻:fp1=30; % 通带截止频率 fs1=40; % 阻带截止频率 fp2=70; % 通带截止频率 fs2=60; % 阻带截止频率 Rp=1; Rs=25; Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi; Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi; Wp=[Wp1,Wp2]; Ws=[Ws1,Ws2];若信号表达式为()3sin(210030/180) 1.5cos(225090/180)5cos(2270)S t t t t πππππ=⨯-+⨯++⨯则相关代码为:1) 低通滤波器代码fp=110; % 通带截止频率 fs=130; % 阻带截止频率 Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示 (1):脉冲响应不变法OmegaP=Wp*Fs; OmegaS=Ws*Fs;[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s'); [b,a]=butter(n,Wc,'s'); % 指明为高通滤波器 [Bz,Az]=impinvar(b,a,Fs);(2)双线性变换法OmegaP=2*Fs*tan(Wp/2); OmegaS=2*Fs*tan(Ws/2); % 频率预畸[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(n,Wc,'s'); [Bz,Az]=bilinear(b,a,Fs);2)高通滤波器fp=280; % 通带截止频率fs=260; % 阻带截止频率Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; %临界频率采用角频率表示Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'high','s');[Bz, Az]=bilinear(b,a,Fs);3)带通滤波器fp1=130; % 通带截止频率 fs1=110; % 阻带截止频率fp2=255; % 通带截止频率 fs2=265; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; Ws=[Ws1,Ws2];(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'s'); [Bz,Az]=bilinear(b,a,Fs);4)带阻滤波器的代码如下:fp1=110; % 通带截止频率 fs1=240; % 阻带截止频率fp2=265; % 通带截止频率 fs2=255; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; Ws=[Ws1,Ws2];(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸 OmegaS=2*Fs*tan(Ws/2); [n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'stop','s'); [Bz,Az]=bilinear(b,a,Fs);。