第三章分子荧光光
系间跨跃(ISC)——系间跨跃 是指不同多重态之间的无辐 射跃迁过程,它涉及到受激 发电子自旋状态的改变。如 由第一激发单重态S1跃迁至 第一激发三重态T1,使原来 两个自旋配对的电子不再配 对。这种跃迁是禁阻的(不符 合光谱选律),但如果两个能 态的能层有较大重叠时,如 图中S1的最低振动能级与T1 的较高振动能级重叠,就有 可能通过自旋一轨道耦合等 作用实现这一跃迁。系间跨 跃的速度较慢,经历的时间 较长。
进入二十世纪以来,荧光现象被研究得更多了,在理论和实验技术上都得到 极大的发展。特别是近几十年来,在其他学科迅速发展的影响下,随着激光、 计算机和电子学的新成就等一些新的科学及技术的引入,大大推动了荧光分析 法在理论上及实验技术上的发展,出现了许多新的理论和新的方法。 在我国,二十世纪五十年代初期仅有极少数的分析工作者从事荧光分析方面 的研究工作。到了七十年代以后,已逐步形成一支在这个研究领域中的工作队 伍。目前,研究内容已从经典的荧光分析方法扩展到新近发展起来的一些新方 法和新技术。 磷光也是某些物质在紫外光照射下所发射的光,早期并没有与荧光明确的区 分。1944年Lewis和Kasha提出了磷光与荧光的不同概念,指出磷光是分子从 亚稳的激发三重态跃迁回基态所发射出的光,它有别于从激发单重态跃迁回基 态所发射的荧光。磷光分析法由于其有某些特点,几十年来的理论研究及应用 也不断得到发展。
处于激发态的分子是很不稳定的,它可能通过辐射跃迁 和非辐射跃迁的形式去活化(去激发)释放出多余的能量 而返回基态。 辐射跃迁主要涉及到荧光,延迟荧光或磷光的发射; 无辐射跃迁是指以热的形式释放多余的能量,包括振动 弛豫、内部转移、系间跨越及外部转移等过程。
振动弛豫(简写为VR)—— 当分子吸收光辐射(为图中 的λ1、λ2)后可能从基态的 最低振动能级(V=0)跃迁到 激发单重态Sn(如图中S1、 S2)的较高振动能级上。然 后,在液相或压力足够高 的气相中,分子间的碰撞 几率很大,分子可能将过 剩的振动能量以热的形式 传递给周围环境,而自身 从激发态的高振动能级跃 迁至该电子能级的最低振 动能级上,这个过程称为 振动弛豫。发生振动弛豫 的时间为10-12s数量级。
第三章 分子荧光光谱法
第一节 概述
一、荧光的发现 第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家 N.Monardes,他于1575年提到,在含有一种称为“Lignum Nephriticum” 的木头切片的水溶液中,呈现出极为可爱的天蓝色。以后逐步有一些学者 也观察和描述过荧光现象,但对其本质及含义的认识都没有明显的进展。 直到1852年,对荧光分析法具有开拓性工作的Stokes在考察奎宁和绿色 素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍为长些,而 不是由光的漫反射引起的,从而导入荧光是光发射的概念,并提出了“荧 光”这一术语,他还研究了荧光强度与荧光物质浓度之间的关系,并描述 了在高浓度或某些外来物质存在时的荧光猝灭现象。可以说,他是第一个 提出应用荧光作为分析手段的人。1867年,Goppelsröde应用铝一桑色素 配位化合物的荧光测定铝,这是历史上首次进行的荧光分析工作。
内部转移(IC)——当高电子能级中 的低振动能级与低电子能级中的 高振动能级发生重叠时,常发生 电子从高电子能级以无辐射跃迁 形式转移至低电子能级。如中, S2和T2中的低振动能级与S1和T1 中的高振动能级重叠,电子可以 通过振动能级的重叠从S2跃迁至 S1,或从T2跃迁至T1。这个过程 称为内部转移。内部转移的时间 为10-11s~10-13s数量级。振动 弛豫及内部转移的速率比由高激 发态直接发射光子的速率快得多, 所以,分子吸收辐射能后不管激 发到哪一个激发单重态,都能通 过振动弛豫及内部转移而跃迁到 最低(第一)激发单重态的最低振动 能级。
荧光发射(FE)——处于激发 单重态的电子经振动弛豫及 内部转移后到达第一激发单 重态(S1)的最低振动能级 (V=0)后,以辐射的形式跃迁 回基态(S0)的各振动能级,这 个过程为荧光发射,发射的 荧光波长为。由于经过振动 弛豫和内部转移的能量损失, 因此荧光发射的能量比分子 吸收的能量要小,荧光发射 的波长比分子吸收的波长要 长,即。第一激发单重态最 低振动能级的平均寿命约为 10-9~10-4s,因此荧光寿 命也在这一数量级。
基态分子吸收能量后,若电子在跃迁过程中,不发生自旋 方向的变化,这时仍然是M=1,分子处于激发的单重态; 如果电子在跃迁过程中伴随着自旋方向的变化,这时分子 中便具有两个自旋不配对的电子, 即S=1,M=3,分子处于 激发的三重态,用符号T表示。下图为电子重态示意图。
能量
(a)基态单重态 (S0)(b)激发单重态(S) (c)激发三重态(T)
二、光致发光
在一般温度下,大多数分子处在基态的最低振动能级。处 于基态的分子吸收能量(电能、热能、化学能或光能等)后被 激发为激发态。激发态是很不稳定的,它将很快地释放出 能量又重新跃迁回基态。若分子返回基态时以发射电磁辐 射(即光)的形式释放能量,就称为“发光”。如果物质的分 子吸收了光能而被激发,跃迁回基态所发射的电磁辐射, 称为荧光和磷光。
第二节 基本原理
一、荧光的产生 (一)分子的激发 每个分子中都具有一系列严格分立相隔的能级,称为电子能极,而 每个电子能级中又包含有一系列的振动能级和转动能级。分子中电 子的运动状态除了电子所处的能级外,还包含有电子的多重态,用 M=2S+1表示,S为各电子自旋量子数的代数和,其数值为0或1 。 根据Pauli不相容原理,分子中同一轨道所占据的两个电子必须具有 相反的自旋方向,即自旋配对。若分子中所有电子都是自旋配对的, 则S=0,M=1,该分子便处于单重态(或叫单重线),用符号S表示。大 多数有机化合物分子的基态都磁性分子,而激发三重态分子则是顺磁性 2、激发单重态的平均寿命大约为10-8s,而激发三重态的平均寿命长达 10-4s 3、电子由S0→S1、S2等的跃迁较容易,属于允许跃迁,而由S0→T1、 T2等的跃迁很难发生,属于禁阻跃迁。 4、激发三重态比相应的激发单重态能级稍低一些。