第一节 有界线性算子的谱一、算子代数定义:()L X 是一复Banach 空间,并且为一具有线性运算与乘法运算的代数系统,我们称其为算子代数。
性质:设,,(),R S T L X α∈∈C ,则有 1、结合律:()()RS T R ST =,(,)m nm n T T T m n +=∈N ;2、()()()ST S T S T ααα==;3、(),()R S T RS RT R S T RT ST +=++=+;4、单位算子I 满足:IT TI T ==;5、:T X X →为同构⇔存在,()A B L X ∈,使得AT I TB ==;必定A B =,称它为T 的逆,记作1T -,并称T 为可逆算子。
以()GL X 记()L X 中的可逆算子的全体。
6、若,()S T GL X ∈,则()ST GL X ∈,且11111(),()()n n ST T S T T -----==。
当()T GL X ∈时约定10()(0),nn T T n T I --=>=,因而对任何,k k Z T ∈有意义。
注:1、算子乘法不满足交换律; 2、,(1)nn ST S T TT n ≤≤≥;3、若在()L X 中,n n S S T T →→,则必有n n S T ST →。
定义:设T 属于某算子代数,称010()(3.1.1)n n n n n f T T I T T αααα∞===++++∑、(其中系数(0)n n α∈≥C 为算子幂级数。
性质:设通常幂级数0()nnn f λαλ∞==∑有收敛半径R ,则当(),T L X T R ∈<时级数(3.1.1)绝对收敛:nn n n T T αα≤<∞∑∑。
引理3.1.1 设()T L X ∈,则1()n n I T T ∞-=-=∑只要其右端级数收敛。
特别,当1T <时上式必成立。
推论:若,(),T S L X T ∈可逆,则1110()()n n T S T ST ∞---=+=-∑,只要其右端级数收敛;特别,当S 适当小时必成立。
二、谱与谱半径定义3.1.2 设(),T L X ∈1、若,I T λλ∈-C 不可逆,即()I T GL X λ-∉,则称λ为T 的谱值。
以()T σ记T 的谱值的全体,成其为T 的谱;称()()sup T r T σλσλ∈=为T 的谱半径,它是以原点为中心且包含()T σ的最小的圆的半径。
2、令()\()T T ρσ=C ,称任何的()T λρ∈为T 的正则值;称1(,)()(())R T I T T λλλρ-=-∈为预解式,也记为()R λ或R λ。
3、若λ∈C ,存在0x ≠,使得Tx x λ=(这相当于()x N I T λ∈-),则称λ为T 的特征值,并称x 为T 关于λ的特征向量,称()N I T λ-为T 关于特征值λ的特征子空间。
以()p T σ记T 的特征值的全体,称其为T 的点谱。
性质:1、()()p T T σσ⊂;2、若(),dim T L X X ∈<∞,则(){0}N I T I T λλ-=⇔-可逆,因而()()p T T σσ=。
3、若dim X =∞,则可能有()()p T T σσ≠,即谱值未必是特征值。
定理3.1.3(Gelfand 定理) 设()T L X ∈,则()T σ是非空紧集,且成立谱半径公式:1/()lim nnnr T T σ=。
三、某些应用 定理3.1.4 设幂级数nnαλ∑的收敛半径为,()R T L X ∈。
1、若()r T R σ<,则级数n n T α∑绝对收敛;2、若()r T R σ>,则级数nnTα∑发散。
注:若()r T R σ=,级数nnTα∑可能收敛,也可能发散。
第二节 算子函数一、解析扩张由定理3.1.4可推得:若00()()n n n f λαλλ∞==-∑是圆00(){:}r D r λλλλ∈-<C内的复解析函数,则当0(),()T L X r T I r σλ∈-<时,00()()(3.2.3)nn n f T T I αλ∞==-∑有意义,且上式右端级数绝对收敛。
因000()(){:()}T I T T σλσλλλλσ-=-=-∈,于是00()()(0)()(0)()r r r r T I r T I D T D D σλσλσλλ-<⇔-⊂⇔⊂+=所以:(3.2.3)表示一个定义于集合0{():()()}r T L X T D σλ∈⊂上的算子函数()f T 。
我们将()f T 视为复解析函数()f λ的某种扩张。
特别,熟知的初等函数都可适当地扩张为算子函数。
例如,对数函数111(1)(1)ln ((0))n nn D n λλλ-∞=--=∈∑可扩张为集1{():()(1)}T L X T D σ∈⊂上的算子对数函数11(1)()ln n nn T I T n -∞=--=∑。
类似地,还可定义算子的指数函数Te 、正弦函数sin T ,等等。
但是,在通过深入思考后,我们发现这种推广并非可以简单地实现,我们将会发现以下的问题:1、幂级数仅能表达圆域内的解析函数。
对任意开集()Ω⊂C 内的解析函数()f λ及满足()T σ⊂Ω的()T L X ∈,应如何定义()f T ?2、()f T 能继承()f λ的哪些性质?3、函数()f T 仅只是()f λ的形式扩张,还是有某些不可缺少的实质性应用?为解决以上问题,先介绍算子积分的概念。
设L 是复平面上任一可求长曲线,()T τ是定义于L 上而取值于()L X 中的函数(称为算子值函数),则可用通常的“分割、求和、取极限”的方式定义()T τ沿L 的积分:max 01()lim()i nii Li T d T τττξτ→==∑⎰。
其中01,,,n τττ为L 上顺次排列的分点,0τ与n τ分别为L 的起点与终点,i ξ是L 上介于1i τ-与i τ之间的任一点,1(1)i i i i n τττ-=-≤≤。
性质:1、当()T τ对τ连续时,上述积分必存在。
2、对任给的*u X ∈与x X ∈有,(),()LLu T d x u T x d ττττ<>=<>⎰⎰下面考虑任意复解析函数的扩张问题。
取定非空开集Ω⊂C ,以()H Ω记Ω内的复解析函数之全体,令{():()}D T L X T σΩ=∈⊂Ω设()(),f H T D λΩ∈Ω∈,今探求()f T 的合理定义。
因未必有某个圆0()r D λ,使得0()()r T D σλ⊂⊂Ω,形如式(3.2.3)的定义式一般不再有效。
注意到在复函数理论中,复解析函数不仅可表为幂级数,而且可表为积分,即有如下形式的Cauchy 公式表示:11()()()2L f f d iλττλτπ-=-⎰, 其中L 是Ω内任一围绕λ的简单闭曲线(或称围道,且假定沿其正方向行进时,保持λ所在区域在左边),我们设想将()f T 类似地定义为11()()()(3.2.6)2L f T f I T d iτττπ-=-⎰定义3.2.1 任给()()f H λ∈Ω与T D Ω∈,取Ω内任一围绕()T σ的围道L ,依式(3.2.6)定义()f T ,则得到一个从D Ω到()L X 的函数()f T ,称它为()f λ的解析扩张,或简称为扩张。
注:1、式(3.2.6)右端的积分必存在。
2、式(3.2.6)右端的积分不依赖于L 的选择。
3、定义式(3.2.3)与(3.2.6)(两者都可使用时)是一致的。
4、()f T 的确是()f λ的扩张。
首先,(),L X I λλ→→C显然是一等距嵌入,且此嵌入保持乘积运算。
因此,不妨认为()L X ⊂C ,即将λ与I λ等同。
显然(){}I σλλ=,因此可以认为D ΩΩ⊂。
λ∀∈Ω,在Ω内取一围绕λ的围道L ,则11()()()2L f I f I I d iλττλτπ-=-⎰⎰ 11[()()]()2Lf d I f I i ττλτλπ-=-=⎰, 可见()f I λ与()f λ一致。
二、解析扩张的性质定理3.2.2 设(),()(),()()f g H h H λλλ'∈Ω∈Ω,(),f T D Ω'Ω⊂Ω⊂∈C ,则 1、()()()()f g T f T g T +=+; 2、()()()()fg T f T g T =; 3、()()(())h f T h f T =。
定理3.2.3(谱映射定理) 设()(),f H T D λΩ∈Ω∈,则有(())(())f T f T σσ=。
三、谱分解定理3.2.4(谱分解定理) 设1(),(),2,ni i T L X T n σσσ∈=≥为互不相交的非空闭集,则存在X 的拓扑直和分解:12,(3.2.17)n X X X X =⊕⊕⊕使得每个i X 是T 的不变子空间(即,1)i i TX X i n ⊂≤≤,且()i i T σσ=,(,),(3.2.18)i ii i i iTx T x x x x X ==∈∑∑此处|i i T T X =看作i X 上的有界线性算子。
证明:取充分小的0ε>,令{:(,)}(1),i i C d i n λλσεΩ=∈<≤≤使得i Ω互不相交.令1ni Ω=Ω,则Ω为开集,()T σ⊂Ω.以()i f λ记i Ω之特征函数,则()()i f H λ∈Ω.令(),i i i i P f T X P X ==,以下验证(1)i X i n ≤≤即为所求.(1)验证(3.2.17)式。
显然有恒等式:()()(),()1()i j ij i i if f f f λλδλλλ==∈Ω∑。
于是,由定理3.2.2得,(1,).(3.2.19)i j ij i i iPP P P I i j n δ==≤≤∑特别,2(1)i i P P i n =≤≤,由i iP I =∑得i i iiX P X X ==∑∑,这意味着对每个x X ∈有分解,(1)(3.2.20)i i iix x x X i n =∈≤≤∑。
因i i X P X =,故对式(3.2.20)中的i x 有i y X ∈,使i i i x P y =,从而由式(3.2.19)有i ij j j i j j i j i jjjx P y PP y P x Px δ====∑∑∑。
这表明分解式(3.2.20)是惟一的,因而直和分解式(3.2.17)成立,且i P 就是从X 到iX 的投影。
下证()(1)i j j i X N P i n ≠=≤≤∑。
若()jj ix N P ≠∈∑,则jiiiij ix Ix P x Px Px PX X≠==+=∈=∑。