第八章 巴拿赫空间上的有界线性算子算子线性算子 非线性算子无界线性算子 有界线性算子§1 有界线性算子1.1 有界线性算子的基本概念与性质定义1.1 设E 及1E 都是实(或复的)线性空间,T 是由E 的某个子空间D 到线性空间1E 中的映射,如果对任意D y x ∈,,有()Ty Tx y x T+=+则称T 是可加的。
若对任意的实(或复)数α及任意的D x ∈,有()Tx x Tαα=则称T 是齐次的。
可加齐次的映射称为线性映射或线性算子。
D 中使θ=Tx 的元素x 的集合称为T 的零空间。
设1E 是实(或复)数域,于是T 成为由D 到实(或复)数域的映射,这时称T 为泛函。
如果T 还是线性的,则称T 为线性泛函。
泛函或线性泛函常用g f ,等符号表示。
定义1.2 设E 及1E 都是实或复的赋范线性空间,D 为E 的子空间,T 为由D 到1E 中的线性算子。
如果按照第六章§2.3定义2.6,T 是连续的,则称T 为连续线性算子。
如果T 将D 中任意有界集映成1E 中的有界集,则称T 是有界线性算子。
如果存在D 中的有界集A 使得()A T 是1E 中的无界集,则称T 是无界线性算子。
例 1 将赋范线性空间E 中的每个元素x 映成x 自身的算子称为E 上的单位算子,单位算子常以I 表示.将E 中的每个元素x 映成θ的算子称为零算子.容易看出,单位算子与零算子既是有界线性算子也是连续线性算子.例 2 连续函数的积分()()⎰=badt t x x f是定义在连续函数空间[]b a C ,上的一个有界线性泛函,也是连续线性泛函.*例 1、例 2中出现的线性算子或线性泛函既是有界的又是连续的.对线性算子来说,有界性与连续性等价(见定理1.3).定理 1.1 设E ,1E 都是实赋范线性空间,T 是由E 的子空间D 到1E 中的连续可加算子.则T 满足齐次性,因此T 是连续线性算子.*推论 设E ,1E 都是复赋范线性空间,T 是由E 的子空间D 到1E 中的连续可加算子,且iTx ix T =)(,则T 满足齐次性,因此T 是连续线性算子.*定理 1.2 设E ,1E 都是赋范线性空间,T 是由E 的子空间D 到1E 中的线性算子.则T 有界的充要条件是存在0>M ,使得对一切D x ∈,有x M Tx ≤.**定理1.3 设E ,1E 都是赋范线性空间,T 是由E 的子空间D 到1E 中的线性算子.则下列性质等价:(i) T 连续;(ii) T 在原点θ处连续; (iii) T 有界.由此定理知,对线性算子来说,有界性、连续性以及在原点的连续性均相互等价.而且还可以证明:这三个等价条件也与在中任一给定的点处的连续性等价.为了对有界线性算子进行更深入的讨论,我们将对它引进一个重要的量—算子的范数.定义 1.3 设E ,1E 都是赋范线性空间,T 是由E 的子空间D 到1E 中的有界线性算子.使x M Tx ≤对一切D x ∈都成立的正数M 的下确界称为T 的范数,记为T .因M 是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠∈θx D x x Tx ,: 的一个上界,因此算子T的范数T 作为所有上界M 的下确界也是上述集合的一个上界,而且由定义知,T 是上述集合的最小上界,即上确界,亦即xTx T Dx x ∈≠=θsup由此容易导出下列结论:(i) 对一切D x ∈,有x T Tx ≤. *(ii)Tx Tx T Dx x Dx x ∈=∈≤==11sup sup现在举几个实例说明如何估计有界线性算子的范数及如何求出其范数.例3 设()()n j i a ij .,2,1,,⋅⋅⋅=为一给定的n n ⨯方阵,ij a 均为实数,由等式∑==nj j ij i a 1ξη ()n i ,,2,1⋅⋅⋅=定义了一个由nR 到nR 的算子T :y Tx =.它将元素()n x ξξξ,,,21⋅⋅⋅=映成元素()n y ηηη,,,21⋅⋅⋅=.在n R 中任取两个向量()()()()()2,1,,,,21=⋅⋅⋅=k x k n k k k ξξξ,由等式()()()()∑∑∑===+=⎪⎭⎫ ⎝⎛+nj nj j ij j ij nj j j ij a a a 1121121ξξξξ 可知,T 是可加的,类似地可以证明T 是齐次的,因此T 是线性算子,由柯西不等式,有2112211,22112⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑===nj j nj i ij ni i a ξη故T 有界,因此T连续,且()212a ijT ≤.*例 4 我们用()∞∞-,C 表示定义在()∞∞-,上有界连续函数构成的集,其中的线性运算与空间[]b a C ,的相同,在()∞∞-,C 中定义范数如下:()t y y t ∞<<∞-=sup ()()∞∞-∈,C y则()∞∞-,C 是一个巴拿赫空间.* 设()∞∞-∈,L x ,令()()⎰∞∞--==dt t x e s y Tx y ist: T 是定义在()∞∞-,L 上而值域包含在()∞∞-,C 中的线性算子.再由()()()()()⎰⎰∞∞-∞∞--=≤=dt t x dt t x es y s Tx ist*可知,T 有界因而连续,且1≤T .例 5 在内插理论中我们往往用拉格朗日公式来求已知连续函数的近似多项式.设[]b a C x ,∈,在[]b a ,中任取n 个点,作多项式()()()()()()()()()n k k k k k k n k k kt t t t t t t t t t t t t t t t t l -⋅⋅⋅--⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=+-+-111111其中n k ,,2,1⋅⋅⋅=.再令()()()∑===nk kkn t l t x t y x L y 1:则n L 是由[]b a C ,到其自身的有界线性算子,且范数满足()∑=≤≤=nk k bt a n t l L 1max (4)n L 的线性是明显的.今证n L 有界且等式(4)成立.令 ()∑=≤≤=nk k bt a t l 1max α那么()()()x t x t l t x x L bt a nk kkb t a n αα=≤=≤≤=≤≤∑max max 1故α≤n L (5)另一方面,由于()∑=nk k t l 1在[]b a ,上连续,故存在[]b a t ,0∈使得()∑==nk k t l 10α取[]b a x ,0∈满足:()()()n k t l t x x k k ,,2,1,sgn ,1000⋅⋅⋅===至于0x 在[]b a ,中其它点处的值则可以任意,但绝对值不能超过1,并()t x 0保证在[]b a ,上连续.于是()()()()()()α===≥∑∑==nk k nk kkn n t l t l t l t x L x L 101000sgn故α≥n L (6)由不等式(5)、(6)可得等式(4). 例 6 设()s t K ,是定义b s a b ta ≤≤≤≤,在上的连续实函数.在空间[]b a C ,上定义如下的积分算子: ()()()()()⎰==bads s x s t K t Tx t y ,则T 为[]b a C ,到其自身的有界线性算子,且范数满足()⎰≤≤=babt a ds s t K T ,max (7)显然T 是[]b a C ,到其自身的线性算子.今证T 有界且等式(7)成立.令 ()⎰≤≤=babt a ds s t K ,max α则()()()()xds s t K t x dss x s t K Tx babt a bt a babt a α=≤=⎰⎰≤≤≤≤≤≤,max max ,max故T 有界且α≤T .由于()⎰bads s t K ,是t的连续函数,故存在[]b a t ,0∈,使得()⎰=bads s t K ,0α记(){}0,:00≥=s t K s e .作函数()()()00,1,1e t nd e t nd t n +-=ϕ其中()0,e t d为t 与0e 的距离,则()t n ϕ于[]b a ,上连续,且()1≤t n ϕ.注意到0e 为闭集,()t n ϕ还有下列性质:()()()⎩⎨⎧∞→∉-→∈==n e t n e t t n 当对一切00,1,1ϕ 由勒贝格控制收敛定理,当∞→n 时,有()()()()()⎰⎰=→=ba ba n n ds s t K ds s s t K t T αϕϕ,,000于是()TT T t T n nn n ≤≤≤=∞→ϕϕϕα0lim因此α=T .若原Φ=0e ,则令(){}0,:0<=s t K s e .例 7 在连续函数空间[]1,0C 中讨论微分算子dtdT =.将在[]1,0上连续可微函数构成的集[]1,01C 作为T 的定义域,则T 是定义[]1,01C 在上,并在[]1,0C 中取值的线性算子.我们证明T 无界. 取()nt t x n sin =,则1=n x ,但∞→===n nt n nt dtd Tx n cos sin (当∞→n 时)故T 将[]1,01C 中的单位球面映成[]1,0C 中的无界集.T 无界.。