当前位置:文档之家› 自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一典型系统的时域响应和稳定性分析 (2)一、实验目的 (3)二、实验原理及内容 (3)三、实验现象分析 (5)方法一:matlab程序 (5)方法二:multism仿真 (12)方法三:simulink仿真 (17)实验二线性系统的根轨迹分析 (21)一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21)二、根据根轨迹图分析系统的闭环稳定性 (22)三、如何通过改造根轨迹来改善系统的品质? (25)实验三线性系统的频率响应分析 (33)一、绘制图1. 图3系统的奈氏图和伯德图 (33)二、分别根据奈氏图和伯德图分析系统的稳定性 (37)三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导出系统的传递函数 (38)实验四、磁盘驱动器的读取控制 (41)一、实验原理 (41)二、实验内容及步骤 (41)(一)系统的阶跃响应 (41)(二) 系统动态响应、稳态误差以及扰动能力讨论 (45)1、动态响应 (46)2、稳态误差和扰动能力 (48)(三)引入速度传感器 (51)1. 未加速度传感器时系统性能分析 (51)2、加入速度传感器后的系统性能分析 (59)五、实验总结 (64)实验一典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益01T K K =。

(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图2),s 1T 0=, s T 2.01=,R200K 1= R200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ 2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。

(4) 实验内容从Routh 判据出发,为了保证系统稳定,K 和R 如何取值,可使系统稳定,系统临界稳定,系统不稳定由Routh 判断得,Routh 行列式为:S 31 20S 212 20K S 1(-5K/3)+20 0 S 020K 0为了保证系统稳定,第一列各值应为正数,所以有 ⎪⎩⎪⎨⎧>>+-0K 20020K 35得: 0 < K < 12 ⇒ R > 41.7K Ω 系统稳定;K = 12 ⇒ R = 41.7K Ω 系统临界稳定; K > 12 ⇒ R < 41.7K Ω 系统不稳定;三、实验现象分析方法一:matlab 程序1.典型二阶系统瞬态性能指标表1其中21e Mp ζ-ζπ-=,2np 1t ζ-ωπ=,n s 4t ζω=,21p e 1)t (C ζ-ζπ-+=matlab 程序:R=10; K=200/R;wn=10*sqrt(10/R); r=5/(2*wn); num=5*K; den=[1 5 5*K]; sys=tf(num,den);Mp=exp(-r*pi./sqrt(1-r*r)); tp=pi./(wn*sqrt(1-r*r)); ts=4./(r*wn); Ctp=1+Mp; t=0:0.01:3; step(sys,t);gridxlabel('t');ylabel('C(t)');title('step response'); hold offR=10R=1602.典型三阶系统在不同开环增益下的响应情况R(KΩ) 开环增益K 稳定性125 4 稳定41.6667 12 振荡(临界)25 20 不稳定开环增益K=4程序:K1=20;R1=500/K1;num1=[K1];den1=[0.05 0.6 1 K1];roots(den1)[z1, p1, k1]=tf2zp(num1,den1)t=0:0.01:10;step(num1,den1,t)xlabel('t');ylabel('C(t)');title('step response'); grid hold offz1 = Empty matrix: 0-by-1p1 =-10.8356 + 0.0000i-0.5822 + 2.6541i-0.5822 - 2.6541ik1 = 80开环增益K=12z1 = Empty matrix: 0-by-1 p1 = -12.0000 + 0.0000i0.0000 + 4.4721i0.0000 - 4.4721ik1 =240开环增益K=20z1 =Empty matrix: 0-by-1 p1 =-12.8628 + 0.0000i 0.4314 + 5.5598i 0.4314 - 5.5598i k1 = 400分析:在二阶系统时t s 只给出了一个公式,而在课本上,可以知道欠阻尼,临界阻尼以及过 阻尼三种情况下t s 的计算方法不相同,在欠阻尼的情况下,若取误差带为5%,则计算时常取ns t ζω3.5=,若取误差带为2%,则计算时常取ns t ζω.44=;在临界阻尼的情况下,若取误差带为5%,则计算时常取14.75T t s = ))1(1(21--=ζζωn T ;在过阻尼的情况下,也有固定的公式。

参数项目R(KΩ)K ωn ξC(tp)C(∞)Mp (%) Tp (s) ts (s)阶跃响应情况理论值测量值理论值测量值理论值测量值0<ξ<1 欠阻尼10 20 100.251.44 144.4344.40.32450.3261.61.623 衰减振荡50 44.47210.55901.12 112.03120.84720.8481.61.305ξ=1临界阻尼1601.25002.50001 无 1 无无 1.92.339单调指数ξ> 1 过阻尼200 12.23611.1180无 1 无无 2.63.178单调指数二阶R=10(取2%)由图可知,C(tp)=1.444v,Tp=325.502ms,Ts=1.623s,并可计算得到Mp=44.4% R=50由图可知,C(tp)=1.120v,Tp=848.297ms,Ts=1.305s,并可计算得到Mp=12%R=160由图可知,Ts=2.339sR=200由图可知,Ts=3.178s三阶multisimR(KΩ) 开环增益K 稳定性30 16.7 不稳定发散41.7 12 临界稳定等幅振荡100 5 稳定衰减收敛R=30R=41.7R=100方法三:simulink仿真二阶:参数项目R(KΩ)K ωn ξC(tp)C(∞)Mp (%) tp (s) ts (s)阶跃响应情况理论值测量值理论值测量值理论值测量值0<ξ<1欠阻尼10 20 100.251.44 144.430.32451.6衰减振荡50 44.47210.55901.12 112.030.84721.6ξ=1临界阻尼1601.25002.50001 无 1 无无 1.9单调指数ξ> 1过阻尼200 12.23611.1180无 1 无无 2.6 单调指数K=4K=1.25三阶:R(KΩ) 开环增益K 稳定性30 16.7 不稳定发散41.7 12 临界稳定等幅振荡100 5 稳定衰减收敛R=30,K=16.7时R=41.7,K=12时R=100,K=5时实验二 线性系统的根轨迹分析一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹T S+1R(S)K2+_T S 12E(S)T S+1C(S)K11已知图3系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R500K =),绘制系统的根轨迹程序:clc;clear;den=conv([0.1 1 0],[0.5 1]);%den=conv([1 10 0],[1 2]); G=tf(1,den);rlocus(G);sgrid;axis([-15 5 -10 10])二、根据根轨迹图分析系统的闭环稳定性分析方法为通过rlocfind在作好的根轨迹图上,确定被选的闭环极点位置的增益值k和此时闭环极点r(向量)的值,然后再绘制该点的闭环传递函数的阶跃响应图程序:clc;clear;den=conv([0.1 1 0],[0.5 1]);G=tf(1,den);rlocus(G);sgrid;axis([-15 5 -10 10])[k,r]=rlocfind(G);G1=tf(k,den);sys=feedback(G1,1);figurestep(sys)图形:1)全部闭环极点在虚轴左侧时,闭环系统稳定2)当闭环极点存在虚轴右侧时,闭环系统不稳定3)闭环极点在虚轴上时,阶跃响应为等幅振荡,闭环系统临界稳定分析:当改变根轨迹增益K时,所有闭环极点均在左边平面,则稳定。

当在右半平面存在极点时,系统不稳定发散。

当在虚轴上时临界稳定,等幅振荡。

三、如何通过改造根轨迹来改善系统的品质?使用根轨迹设计工具SISO在系统中附加开环负实数零点或负实部的共轭零点,可使系统根轨迹向s左半平面方向弯曲。

程序:den=conv([0.1 1 0],[0.5 1]);G=tf(1,den);rltool(G)A添加实数零点s=-20B添加实数零点s=-15C添加实数零点s=-10D添加实数零点s=-5E添加共轭零点-20+20iF添加共轭零点-10+10iG添加共轭零点-5+10i结论:当开环极点位置不变,在系统中附加开环负实数零点或开环负共轭零点时,可使系统根轨迹向s左半平面方向弯曲,而且这种影响将随开环零点接近坐标原点的程度而加强。

实验三线性系统的频率响应分析一、绘制图1. 图3系统的奈氏图和伯德图图1图3程序:clc;clear;r1=10;num1=200/r1;r2=50;num2=200/r2;r3=160;num3=200/r3;r4=200;num4=200/r4;den=conv([1 0],[0.2 1]);roots(den)figure(1)subplot(2,2,1);nyquist (num1,den);title('r=10');axis([-2,1,-2,2]); subplot(2,2,2);nyquist (num2,den);title('r=50');axis([-2,1,-2,2]); subplot(2,2,3);nyquist (num3,den);title('r=160');axis([-2,1,-2,2]); subplot(2,2,4);nyquist (num4,den);title('r=200');axis([-2,1,-2,2]); figure(2)subplot(2,2,1);bode(num1,den);title('r=10')subplot(2,2,2);bode(num2,den);title('r=50')subplot(2,2,3);bode(num3,den);title('r=160')subplot(2,2,4);bode(num4,den);title('r=200')图1系统的波特图程序:r1=30;num1=500/r1;r2=41.7;num2=500/r2;r3=100;num3=500/r3;den=conv(conv([1 0],[0.1 1]),[0.5 1]);roots(den)figure(1)subplot(3,1,1);nyquist (num1,den);title('r=30');axis([-2,1,-2,2]); subplot(3,1,2);nyquist (num2,den);title('r=41.7');axis([-2,1,-2,2]); subplot(3,1,3);nyquist (num3,den);title('r=100');axis([-2,1,-2,2]); figure(2)subplot(3,1,1);bode(num1,den);title('r=30')subplot(3,1,2);bode(num2,den);title('r=41.7')subplot(3,1,3);bode(num3,den);title('r=100')图3系统的奈氏图图3系统的开环极点二、分别根据奈氏图和伯德图分析系统的稳定性根据奈氏图和伯德图分析图1系统的稳定性:由图1系统的奈氏图可以看到,不论哪种R,从0到正无穷的奈氏曲线都没有穿越-1点,而求开环极点可知,P=0,所以Z=0,由Nyquist判据可知图1系统稳定。

相关主题