当前位置:文档之家› 自动控制原理C作业(第二章)答案

自动控制原理C作业(第二章)答案

第二章控制系统的数学模型2.1RC无源网络电路图如图2-1所示,试采用复数阻抗法画出系统结构图,并求传递函数U c(s)/U r(s)。

图2-1解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之间的关系,满足广义的欧姆定律。

即:)()()(sZsIsU=如果二端元件是电阻R、电容C或电感L,则复阻抗Z(s)分别是R、1/C s或L s。

(1)用复阻抗写电路方程式:sCSISVRSUSUSIsCSISISURSUSUSIccccCr222221212111111)()(1)]()([)(1)]()([)(1)]()([)(⋅=-=⋅-=⋅-=(2)将以上四式用方框图表示,并相互连接即得RC网络结构图,见图2-1(a)。

2-1(a)。

(3)用梅逊公式直接由图2-1(a)写出传递函数U c(s)/U r(s) 。

∆∆=∑KGG K独立回路有三个:SC R S C R L 1111111-=⋅-=SC R S C R L 22222111-=⋅-=回路相互不接触的情况只有L 1和L 2两个回路。

则2221121121S C R C R L L L == 由上式可写出特征式为:222111222112132111111)(1S C R C R S C R S C R S C R L L L L L ++++=+++-=∆通向前路只有一条221212*********SC C R R S C R S C R G =⋅⋅⋅=由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为Δ1=1代入梅逊公式得传递函数1)(111111121221122121222111222112221111++++=++++=∆∆=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G2-2 已知系统结构图如图2-2所示,试用化简法求传递函数C (s )/R (s )。

图2-2解:(1)首先将含有G 2的前向通路上的分支点前移,移到下面的回环之外。

如图2-2(a )所示。

(2)将反馈环和并连部分用代数方法化简,得图2-2(b )。

SC R R S C L 12213111-=⋅-=(3)最后将两个方框串联相乘得图2-2(c )。

图2-2 系统结构图的简化2.3化简动态结构图,求C(s)/R(s)图2-3解: 单独回路1个,即3211G G G L -=两个互不接触的回路没有 于是,得特征式为3211 1G G G L a +=-=∆∑从输入R 到输出C 的前向通路共有2条,其前向通路传递函数以及余因子式分别为211G G P = 11=∆422G G P = 12=∆因此,传递函数为∆∆+∆=2211)()(P P s R s C 32124121G G G G G G G ++=2.4 用梅森公式求系统传递函数。

图2-4解: 单独回路5个,即11G L -=212G G L =23G L -=214G G L -=215G G L -=两个互不接触的回路没有于是,得特征式为21211 1G G G G L a+++=-=∆∑从输入R 到输出C 的前向通路共有4条,其前向通路总增益以及余因子式分别为11G P = 11=∆ 22G P = 12=∆ 213G G P = 13=∆214G G P -= 14=∆因此,传递函数为∆∆+∆+∆+∆=44332211)()(P P P Ps R s C 2121211G G G G G G ++++=2-5 试简化图2-5中的系统结构图,并求传递函数C(s)/R(s )和C(s)/N(s)。

图2-5解: 仅考虑输入R (S )作用系统时,单独回路2个,即211G G L -=1212H G G L -=两个互不接触的回路没有,于是,得特征式为121211 1H G G G G L a++=-=∆∑从输入R 到输出C 的前向通路共有1条,其前向通路总增益以及余因子式分别为211G G P = 11=∆因此,传递函数为∆∆=11)()(P s R s C 12121211H G G G G G G ++=仅考虑输入N (S )作用系统时,单独回路2个,即211G G L -=1212H G G L -=两个互不接触的回路没有,于是,得特征式为121211 1H G G G G L a++=-=∆∑从输入N 到输出C 的前向通路共有2条,其前向通路总增益以及余因子式分别为11-=P 12111H G G +=∆ 322G G P = 12=∆因此,传递函数为∆∆+∆=2211)()(P P s N s C2-6用梅逊增益公式求传递函数C(s)/R(s)和E(s)/R(s)。

图2-6解:C(s)/R(s):单独回路3个,即111H G L -=232H G L -=213213H H G G G L -=1L 2L 两个互不接触的回路,于是,得特征式为21312132123111 1H H G G H H G G G H G H G L L L cb a ++++=+-=∆∑∑从输入R 到输出C 的前向通路共有1条,其前向通路总增益以及余因子式分别为3211G G G P = 11=∆432G G P = +=∆1211H G因此,传递函数为∆∆+∆=2211)()(P P s R s C 213121321231111433211)1(H H G G H H G G G H G H G H G G G G G G ++++++=E(s)/R(s):单独回路3个,即111H G L -=232H G L -=213213H H G G G L -=1L 2L 两个互不接触的回路,于是,得特征式为21312132123111 1H H G G H H G G G H G H G L L L cb a ++++=+-=∆∑∑12121322111H G G G G G G H G G ++-+-=从输入R 到输出E 的前向通路共有2条,其前向通路总增益以及余因子式分别为11=P 2311H G +=∆21432H H G G P -= 12=∆因此,传递函数为∆∆+∆=2211)()(P P s R s E213121321231121432311H H G G H H G G G H G H G H H G G H G ++++-+=第三章 线性系统的时域分析法3-1 设二阶控制系统的单位阶跃响应曲线如图3-1所示。

试确定系统的传递函数。

图3-1 二阶控制系统的单位阶跃响应解 在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。

系统模型为22223)(nn ns s s ωξωωφ++=然后由响应的%p σ、p t 及相应公式,即可换算出ξ、n ω。

%33334)()()(%=-=∞∞-=c c t c p p σ 1.0=p t (s )由公式得%33%21/==--ξπξσep 34 0.11.012=-=ξωπn p t换算求解得: 33.0=ξ、 2.33=n ω110222330623)(2222++=++=s s s s s n n n n ωξωωφ3-2 设系统如图3-2所示。

如果要求系统的超调量等于%15,峰值时间等于0.8s ,试确定增益K 1和速度反馈系数K t 。

同时,确定在此K 1和K t 数值下系统的延迟时间、上升时间和调节时间。

图3-2解 由图示得闭环特征方程为0)1(112=+++K s K K s t即21n K ω=,nnt t K ωωξ212+=由已知条件8.0115.0%21/2=-===--tn p p t e t tξωπσξπξ解得1588.4,517.0-==s n t ωξ于是05.211=K 178.0211==-K K nt t ωξR (s )C (s )1+K t sK/s(s+1)s t nt t d 297.02.06.012=++=ωξξs t tn t tn r 538.01arccos 122=--=--=ξωξπξωβπs t nt s 476.15.3==ωξ3-3 已知系统特征方程式为0516188234=++++s s s s 试用劳斯判据判断系统的稳定情况。

解 劳斯表为4s 1 18 5 3s 8 16 0 2s168161188=⨯-⨯ 580158=⨯-⨯1s 5.1316581616=⨯-⨯ 00s 55.1301655.13=⨯-⨯由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。

3-4 已知系统特征方程为053222345=+++++s s s s s 试判断系统稳定性。

解 本例是应用劳斯判据判断系统稳定性的一种特殊情况。

如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。

劳斯行列式为5s 1 2 3 4s 1 2 5 3s 0≈ε 2-2sεε22+ 51s 225442+---εεε0s 5由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数ε来代替;第四行第一列系数为(2ε+2/ε,当ε趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当ε趋于零时为2-。

由于第一列变号两次,故有两个根在右半s 平面,所以系统是不稳定的。

3.5解;在求解系统的稳态误差前必须判定系统是否稳定;系统特征方程为05055.11.023=+++s s s 由劳斯判据判断劳斯行列式为3s 1.0 5 2s 5.1 50 1s35 0s 50由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。

)12.0)(11.0(10)5)(11.0(50)(++=++=s s s s s s s G 可知v=1,K=10I ∞=∞++=+++= 型系统,01k k k k e a v pss βγβα当 ,当第五章 线性系统的频域分析法5.1已知系统的开环传函)12.0)(12(10)()(++=s s s s H s G ,用奈氏判据(画出奈氏曲线)判别闭环系统的稳定性。

解:(1) 确定起点和终点1,2)(0=⋅-=∠→νπνωωνj k 初始相角为,故初始相角为-90°, ∞→→0)(ωνωj k 模值为终点: 0)(=∞→-ωωm n j k 模值为,0027090)()(-=⋅--=∠∞→-m n j kmn ωω终止相角为 (2) 求幅相曲线与负实轴的交点)4.01(2.210)(22ωωωω-+-=j j G ,P=0,N-=1, N+=0,R=2(N+-N-)=-2,Z=P-2N=2 由奈氏判据知,闭环系统是不稳定的。

相关主题