当前位置:文档之家› 数学论文 浅谈数学归纳法的应用

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。

一、用数学归纳法证明整除问题用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。

例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36.下面用数学归纳法证明:(1)当n =1时,显然成立.(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.二、用数学归纳法证明恒等式问题对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.例2、是否存在常数c b a ,,,使得等式)(12)1()1(32212222c bn an n n n n +++=+•++•+•对一切自然数n 成立?并证明你的结论.解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11,3===c b a ,于是对3,2,1=n ,下面等式成立:)10113(12)1()1(32212222+++=+•++•+•n n n n n n 令222)1(3221+•++•+•=n n S n假设k n =时上式成立,即)10113(12)1(2+++=k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12)1(++++++=k k k k k k2)2)(1()53)(2(12)1(++++++=k k k k k k )101253(12)2)(1(2+++++=k k k k k ]10)1(11)1(3[12)2)(1(2++++++=k k k k 这就是说,等式当1+=k n 时也成立.综上所述,当10,11,3===c b a 时,题设的等式对一切自然数n 都成立. 三、用数学归纳法证明不等式问题用数学归纳法证明一些与n 有关的不等式时,推导“n =k +1”时成立,有时要进行一些简单的放缩,有时还要用到一些其他的证明不等式的方法,如比较法、综合法、分析法、反证法等等.例3.已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n n n b ; (Ⅱ)证明.332<n S 证明:解:(Ⅰ)证明:当.1121)(,0≥++=≥x x f x 时 因为a 1=1,所以*).(1N n a n ∈≥下面用数学归纳法证明不等式.2)13(1--≤n nn b (1)当n=1时,b 1=13-,不等式成立,(2)假设当n=k 时,不等式成立,即.2)13(1--≤k kk b 那么 kk k k a a a b +--=-=+-1|3|)13(|3|11.2)13(2131k k k b +-≤-≤ 所以,当n=k+1时,不等也成立。

根据(1)和(2),可知不等式对任意n ∈N*都成立。

(Ⅱ)证明:由(Ⅰ)知, .2)13(1--≤n nn b 所以 12212)13(2)13()13(--++-+-≤+++=n nn n b b b S2131)213(1)13(----⋅-=n .33221311)13(=--⋅-< 故对任意.332,<∈*n S N n 例4.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100.(1)求数列{bn }的通项公式bn ;(2)设数列{a n }的通项a n =lg (1+nb 1),记S n 为{a n }的前n 项和,试比较S n 与 21lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1.(2)由bn =2n -1,知S n =lg (1+1)+1g (1+31)+…+lg (1+121-n ) =lg (1+1)(1+31)·…·(1+121-n ). 又211g b n +1=1g 12+n , 因此要比较S n 与211g b n +1的大小,可先比较(1+1)(1+31)·…·(1+121-n )与12+n 的大小. 取n =1,2,3时可以发现:前者大于后者,由此推测 (1+1)(1+31)· …· (1+121-n )>12+n . ① 下面用数学归纳法证明上面猜想:当n =1时,不等式①成立.假设n =k 时,不等式①成立,即 (1+1)(1+31)·…·(1+121-k )>12+k . 那么n =k +1时,(1+1)(1+31)·…·(1+121-k )(1+121+k ) >12+k (1+121+k )=1212)1(2+++k k k . 又[1212)1(2+++k k k ]2-(32+k )2=121+k >0, ∴1212)1(2+++k k k >32+k =.1)1(2++k ∴当n =k +1时①成立.综上所述,n ∈N*时①成立.由函数单调性可判定S n >211g b n +1. 四、用数学归纳法解决某些与正整数有关的探索性问题由有限个特殊事例进行归纳、猜想、,从而得出一般性的结论,然后加以证明是科学研究的重要思想方法.在研究与正整数有关的数学命题中,此思想方法尤其重要.例5、已知y =f (x )满足f (n -1)=f (n )-lg a n -1(n ≥2,n ∈N )且f (1)=-lg a ,是否存在实数α、β使f (n )=(αn 2+βn -1)lg a 对任何n ∈N *都成立,证明你的结论解:∵f (n )=f (n -1)+lg a n -1,令n =2,则f (2)=f (1)+f (a )=-lg a +lg a =0 又f (1)=-lg a ,∴⎩⎨⎧=+=+.1420αββα∴⎪⎪⎩⎪⎪⎨⎧-==.21,21βα∴f (n )=(21n 2-21n -1)lg a 证明:(1)当n =1时,显然成立(2)假设n =k 时成立,即f (k )=(21k 2-21k -1)lg a , 则n =k +1时,f (k +1)=f (k )+lg a k =f (k )+k lg a =(21k 2-21k -1+k )lg a =[21(k +1)2-21(k +1)-1]lg a ∴当n =k +1时,等式成立 综合(1)(2)可知,存在实数α、β且α=21,β=-21,使f (n )=(αn 2+βn -1)lg a 对任意n ∈N *都成立 点评:本题是探索性问题.它通过观察――归纳――猜想――证明这一完整的过程去探索和发现问题,并证明所得出的结论的正确性,这是非常重要的一种思维能力.六、数学归纳法与其它知识点的交汇数学归纳法在高考试题中常与数列、平面几何、解析几何等知识相结合来考查,对于此类问题解决的关键往往在于抓住对问题的所划分标准,例如在平面几何中要抓住线段、平面、空间的个数与交点、交线间的关系等.例6、平面上有n 个圆,每两个圆交于两点,每三个圆不过同一点,求证这n 个圆分平面为n 2-n +2个部分.证明:(1)当n =1时,n 2-n +2=1-1+2=2,而一个圆把平面分成两部分,所以n =1时命题成立.(2)设当n =k 时,命题成立,即k 个圆分平面为k 2-k +2个部分,则n =k +1时,第k +1个圆与前k 个圆有2k 个交点,这2k 个交点把第k +1个圆分成2k 段,每一段把原来的所在平面一分为二,故共增加了2k 个平面块,共有k 2-k +2+2k =(k +1)2-(k +1)+2个部分.∴当n =k +1时,命题也成立.由(1)(2)可知,这个圆把平面分成n 2-n +2个部分.点评:关于这类几何问题,关键在于分析k 与k +1的差异,k 到k +1的变化情况,然后借助于图形的直观性,建立k 与k +1的递推关系.例7.如下图,设P 1,P 2,P 3,…,P n ,…是曲线y =x 上的点列,Q 1,Q 2,Q 3, …,Q n ,…是x 轴正半轴上的点列,且△OQ 1P 1,△Q 1Q 2P 2,…,△Q n -1Q n P n ,…都是正三角形,设它们的边长为a 1,a 2,…,a n ,…,求证:a 1+a 2+…+a n =31n (n +1).x yO P 1Q 1P 2Q 2P 3Q 3证明:(1)当n =1时,点P 1是直线y =3x 与曲线y =x 的交点,∴可求出P 1(31,33). ∴a 1=|OP 1|=32.而31×1×2=32,命题成立. (2)假设n =k (k ∈N *)时命题成立,即a 1+a 2+…+a k =31k (k +1),则点Q k 的坐标为(31k (k +1),0), ∴直线Q k P k +1的方程为y =3[x -31k (k +1)].代入y =x ,解得P k +1点的坐标为)).1(33,3)1((2++k k ∴a k +1=|Q k P k +1|=33(k +1)·32=32(k +1). ∴a 1+a 2+…+a k +a k +1=31k (k +1)+32(k +1)=31(k +1)(k +2). ∴当n =k +1时,命题成立.由(1)(2)可知,命题对所有正整数都成立.评述:本题的关键是求出P k +1的纵坐标,再根据正三角形高与边的关系求出|Q k P k +1|.。

相关主题