当前位置:文档之家› 机械能守恒定律的判定方法和解题思路

机械能守恒定律的判定方法和解题思路

机械能守恒定律的判定方法和解题思路
机械能守恒定律是高中物理中一个重要规律,也是历年高考的重点和热点。

应用时,关键是守恒的判定和解题的思路,本文对这两个问题给予解析。

一、机械能守恒的判定方法
(1)用做功来判断:分析物体系统的受力情况(包含内力和外力),明确各力做功情况,若对物体系统只有重力做功或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判断:若物体系统中只有动能和势能之间的相互转化,而无机械能与其它形式能的转化,则机械能守恒;(3)对于绳子突然绷紧,除非题目特别说明,机械能必定不守恒。

二、机械能守恒的解题思路
应用机械能守恒解题时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒定律,机械能就守恒,而且机械能守恒定律,只涉及物体系初、末状态的物理量,而不需分析中间过程的复杂变化,使物理问题得到简化。

应用的基本思路如下:1. 选取研究对象��物体系或物体;2. 根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒;3. 恰
当的选取参考面,确定研究对象在过程的初、末态时的机械能;
4. 用机械能守恒定律建立方程,求解并验证结果。

三、典例剖析
1. 单个物体的守恒问题
例1 如图1所示,某人以3m/s的速度斜向上抛出一个小球,小球落地时速度为7m/s,不计空气阻力,求小球抛出时离地面的高度h。

(g=10m/s2)
解析选小球为研究对象,以抛出时和落地时为初、末状态,速度大小分别为和,在小球运动过程中,只有重力做功,故小球的机械能守恒。

我们用机械能守恒定律的两种表达式来求解:解法1 用求解。

取地面为零势能参考面,则有:,由机械能守恒定律可得:,代入数据解得:h=2m。

解法2 应用。

不用再选零势能参考面。

小球减少的重力势能,小球增加的动能为,由可得:
,代入数据可得:h=2m。

点评同学们可比较两种解法,谁优谁劣?
2. 物体系的守恒问题
例2 如图2所示,物块M和m用一不可伸长的轻绳通过定滑轮连接,m放在倾角为的固定的光滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m,开始将M抬高到A点,使细绳水平,此时OA段的绳长为L=4.0m,现让M由静止开始下滑,求M下滑3.0m到B点时的速度?(g=10m/s2)
解析 M下滑过程中,M、m组成的系统只有重力做功,而且无摩擦力和介质阻力做功,所以M、m组成的系统机械能守恒,设M 由A至B下落了h,M落至B点时,M、m的速度分别为、,此过程中m在斜面上移动的距离为s:
根据机械能守恒,系统重力势能的减少等于动能的增加,可列方程
由几何关系可得,由M、m运动的关系及速度分解可得,代入数据可解得:,。

点评由上例可看出,应用机械能守恒定律解题的关键有两条:(1)判断机械能是否守恒,即只有重力(或弹力)做功;(2)找出守恒的初、末状态。

(3)对于系统中的两个物体运动方向不在一条直线上的问题,注意两者速度大小的关系。

3. 绳索类物体的守恒问题
例3 如图3所示,总长为L的光滑匀质铁链,跨过一光滑的轻质小定滑轮(滑轮大小不计),开始时底端相平,当略有扰动时,某一端下落,则铁链刚离开滑轮的瞬间,其速度有多大?
解析铁链的一端上升,一端下降是变质量问题,利用牛顿第二定律求解比较麻烦,也起出了高中物理大纲的要求,但由题目的叙述可知,铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能损失,则机械能守恒,因此可用机械能守恒定律求解。

解法设铁链单位长度的质量为,且选铁链的初态的重心位置所在平面为参考面,如图3所示,初态,滑离滑轮时为终态,重心离参考面距离,,(请考虑为什么取负值),,故终态时由机械能守恒定律,有:
,所以。

点评对绳索、链条之类的物体,由于在考查过程中常发生形变,其重心位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体,常以重心的位置来确定物体的重力势能,此题初态的重心位置不在滑轮的顶点,由于滑轮很小,大小不计,可视为对折来求重心,也可分段考虑求出各部分的重力势能后求出代
数和作为总的重力势能,至于零势能参考面可任意选择,但以系统重力势能便于计算为宜。

相关主题