当前位置:文档之家› (完整)高中微积分基本知识

(完整)高中微积分基本知识

高中微积分基本知识第一章、 极限与连续一、 数列的极限 1. 数列 定义:按着正整数的顺序排列起来的无穷多个数 1,,,n x x 叫数列,记作{}n x ,并吧每个数叫做数列的项,第n 个数叫做数列的第n 项或通项 界的概念:一个数列{}n x ,若0M ∃>,..s t 对*n N ∀∈,都有n x M ≤,则称{}n x 是有界的: 若不论M 有多大,总*m N ∃∈,..s t m x M >,则称{}n x 是无界的 若n a x b ≤≤,则a 称为n x 的下界,b 称为n x 的上界{}n x 有界的充要条件:{}n x 既有上界,又有下界2. 数列极限的概念 定义:设{}n x 为一个数列,a 为一个常数,若对∀0ε>,总∃N ,..s t 当n N >时,有n x a ε-< 则称a 是数列{}n x 的极限,记作lim n n x a →∞=或()n x a n →→∞数列有极限时,称该数列为收敛的,否则为发散的 几何意义:从第1N +项开始,{}n x 的所有项全部落在点a 的ε邻域(,)a a εε-+3. 数列极限的性质①唯一性 ②收敛必有界 ③保号性:极限大小关系⇒数列大小关系(n N >时) 二、 函数的极限 1.定义:两种情形①0x x →:设()f x 在点0x 处的某去心邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立, 则称()f x 在0x x →时有极限A记作0lim ()x x f x A →=或0()()f x A x x →→几何意义:对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,()f x 介于两直线y A ε=± 单侧极限:设()f x 在点0x 处的右侧某邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立,称()f x 在0x 处有右极限A , 记作0lim ()x x f x A +→=或0()f x A += 0lim ()x x f x A →=的充要条件为:00()()f x f x +-==A 垂直渐近线:当0lim ()x x f x →=∞时,0x x =为()f x 在0x 处的渐近线②x →∞:设函数()f x 在0x b ≥≥上有定义,A 为常数,若对0ε∀>,,..X b s t ∃>当x X >时,有()f x A ε-<成立,则称()f x 在x →∞时有极限A ,记作lim ()x f x A →∞=或()()f x A x →→∞lim ()x f x A →∞=的充要条件为:lim ()lim ()x x f x f x A →+∞→-∞==水平渐进线: 若lim ()x f x A →+∞=或lim ()x f x A →-∞=,则y A =是()f x 的水平渐近线2.函数极限的性质:①唯一性 ②局部有界性 ③局部保号性(②③在当00x x δ<-<时成立) 三、 极限的运算法则1. 四则运算法则设()f x 、()g x 的极限存在,lim (),lim ()f x A g x B ==则 ①lim ()()f x g x A B ±=± ②lim[()()]f x g x AB = ③()lim()f x Ag x B= (当0B ≠时) ④lim ()cf x cA = (c 为常数) ⑤lim[()]k k f x A = (k 为正整数) 2. 复合运算法则设[()]y f x ϕ=,若0lim ()x x x a ϕ→=,则0lim [()]()x x f x f a ϕ→=可以写成0lim [()][lim ()]x x x x f x f x ϕϕ→→= (换元法基础)四、极限存在准则及两个重要极限 1.极限存在准则 ①夹逼准则设有三个数列{}n x ,{}n y ,{}n z ,满足n n n y x z ≤≤ , lim lim n n n n y z a →∞→∞== 则lim n n x a →∞=②单调有界准则 有界数列必有极限 3. 重要极限①0sin lim 1x x x →= ②1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或()10lim 1x x x e →+= 五、无穷大与无穷小 1.无穷小:在自变量某个变化过程中lim ()0f x =,则称()f x 为x 在该变化过程中的无穷小 ※ 若()0f x =,则()f x 为x 在所有变化过程中的无穷小若()f x ε=,则()f x 不是无穷小 性质:1.有限个无穷小的代数和为无穷小 2.常量与无穷小的乘积为无穷小 3.有限个无穷小的乘积为无穷小4.有极限的量与无穷小的乘积为无穷小5.有界变量与无穷小的乘积为无穷小定理:lim ()f x A =的充要条件是()()f x A x α=+,其中()x α为x 在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(),()x x ααββ==,为同一变化过程中的无穷小若limc αβ=(0c ≠常数) 则α是β的同阶无穷小 (当1c =时为等价无穷小) 若limkc αβ=(0c ≠常数) 则α是β的k 阶无穷小 若lim0αβ= 则α是β的高阶无穷小 常用等价无穷小:(0x →)sin tan arcsin arctan ln(1)1x xxxxxx e +-;21cos 2x x-;(1)1x x βααβ+-;1ln x a x a - 2.无穷大:设函数()f x 在0x 的某去心邻域内有定义。

若对于0M ∀>,0δ∃>..s t 当00x x δ<-<时,恒有()f x M >称()f x 当0x x →时为无穷大,记作0lim ()x x f x →=∞定理:lim ()f x 1lim ()1lim ()f x f x ⎧⎫⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎩⎭无穷大为无穷小无穷小为无穷大 (下:趋于某点,去心邻域不为0)※ 无穷大的乘积为无穷大, 其和、差、商不确定六、连续函数 1.定义设函数()y f x =在0x 某邻域有定义,若对0ε∀>,0δ∃>..s t 当00x x δ<-<时,恒有: 0()()f x f x ε-<也可记作 00lim ()()x x f x f x →= 或 0lim 0x y ∆→∆=00()()f x f x -=(或00()()f x f x +=)为左(或右)连续2.函数的间断点第一类间断点:左右极限存在⎧⎨⎩左右极限相等,该处无定义可去间断点左右极限不等跳跃间断点第二类间断点:无穷间断点,震荡间断点等3.连续函数的运算若函数()f x 与()g x 都在x 处连续,则函数()()f x g x ±,()()f x g x ,()()f xg x (()0g x ≠) 定理:[()]y f g x =,00()g x u =,若()g x 在0x 处连续,()f g 在0u 处连续,则[()]y f g x =在0x 处连续4. 闭区间连续函数的性质① 最值定理:()f x 在[,]a b 上连续, 则12,x x ∃,对一切[,]x a b ∈有 12()()()f x f x f x ≤≤②介值定理:()f x 在[,]a b 上连续,对于()f a 与()f b 之间的任何数u ,至少∃一点ξ,..s t ()f u ξ=第二章、 导数一、导数的概念定义:设函数()y f x =在点0x 的某邻域有定义,如果极限 000()()limx f x x f x x∆→+∆-∆ 存在,则称函数()y f x =在点0x 可导,极限值为函数()y f x =在点0x 处的导数,记为'0()f x单侧导数:设函数()y f x =在点0x 处的左侧00(,]x x δ-有定义,若极限 000()()lim x f x x f x x-∆→+∆-∆ 存在,则称此极限为函数()y f x =在点0x 处的左导数,记为'0()f x -,类似有右导数'0()f x +导函数:函数()y f x =在某区间上可导,则 '0()()()limx f x x f x f x x∆→+∆-=∆性质:①函数()y f x =在点0x 处可导的充要条件''00()()f x f x -+= ②可导⇒连续导数的几何意义: 函数点处的切线斜率 二、求导法则1.函数的和、差、积、商的求导法则定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x ±在x 处也可导,且 '''[()()]()()u x v x u x v x ±=±定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x 在x 处也可导,且 '''[()()]u x v x u v uv =+推论:若1,,n u u 都在x 处可导,则函数12n u u u 在x 处也可导,且 ''''12121212[]n n n n u u u u u u u u u u u u =++定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x 在x 处也可导,且 '''2()()u x u v uv v x v ⎡⎤-=⎢⎥⎣⎦ 2.反函数的求导法则定理:设函数()x g y =在y I 上单调可导,它的值域为x I ,而'()0g y ≠,则其反函数1()()y g x f x -==在区间x I 上可导,并且有''1()()f xg x = 4. 复合函数的求导法则定理:若函数()u x ϕ=在0x 可导,函数()y f u =在点00()u x ϕ=可导,则复合函数(())y f x ϕ=在0x 处可导'''[(())](())()f x f x x ϕϕϕ= 或 dy dy dudx du dx=(连锁规则) 三、高阶导数定义:若函数()y f x =的导数''()y f x =仍可导,则''()y f x =导数为()y f x =的二阶导数,记作2""2,(),d y y f x dx , 类似的,有n 阶导数()(),(),n n n n d y y f x dx四、隐函数求导对于[,()]0F x y x =,或[,()][,()]F x y x G x y x =,若求dy dx求导法:方程两侧对x 求导微分法:方程两侧求微分公式法:''x yF dydx F =- ,将方程化成[,]F x y =0,将F 看成关于x,y 的二元函数,分别对x,y 求偏导'',x y F F 五、参数方程所确定的函数求导()()x t y t ϕψ=⎧⎨=⎩ ,''''()/()t t y dy dy dt dy dx t dx dt dx dt dt t x ψϕ====导数公式 基本函数:导数运算法则:'''()u v u v ±=± ''()Cu Cu ='''()uv u v uv =+ '''2()u u v uv v v-= ()()()()n n n u v uv±=± ()()()()nn k n k k n k uv C u v -==∑ 高阶导数()()[()]()n n n Cf ax b Ca f ax b +=+ ()*(),(),0n m m n mn x A x n N m n -=∈>=若则 ()11!(1)n nn n x x+⎛⎫=- ⎪⎝⎭()()ln x n x n a a a = ()1(1)!(log )(1)ln n n a nn x x a --=- ()(sin )sin()2n n x x π=+()(cos )cos()2n n x x π=+※1.1()()n n o x o x x += 2.'000()()lim ()x f x f x f x x x ∆→-≠-,需补充条件()f x 在0x 处可导或该极限存在'0C ='1()x x μμμ-='()ln x x a a a ='1(log )ln a x x a ='(sin )cos x x ='(cos )sin x x =-'2(cot )csc x x =-'(sec )sec tan x x x ='(csc )csc cot x x x=-'(arcsin )x ='(arccos )x ='21(arctan )1x x =+'21(arccot )1x x =-+第三章、微分一、微分的概念定义:设函数()y f x =在某区间I 上有定义,00,x x x I +∆∈,若00()()y f x x f x ∆=+∆-可表示为()y A x o x ∆=∆+∆ (其中A 与x ∆无关) ,则称A x ∆为y 在0x 处的微分,记作dy A x =∆ ※dy y ∆与的区别: 当y 为自变量时,dy y =∆当y 为因变量时,dy y ≈∆,()y dy o x ∆=+∆,dy 为y 的线性主部 定理:对于一元函数()y f x =,⇔可导可微性质:一阶微分形式不变性,对于高阶微分()()()n n n d y f x dx = 二、微分的几何意义 “以直代曲”①有限增量定理:'()y f x x x θ∆=+∆∆ (01)θ<< ②,L Hospital 法则:型未定式定值法:(),()f x g x 在0x 的某去心邻域有定义,且0lim ()lim ()0x x x x f x g x →→==,(),()f x g x 在0x 的某去心邻域可导,且'()0g x ≠0''()lim ()x x f x A g x →=,则有00''()()lim lim ()()x x x x f x f x g x g x →→= ∞∞,0∞,1∞,∞-∞,00,0∞类似四、函数的单调性与极值 1.单调性:定理:设函数()y f x =在[,]a b 上连续,在(,)a b 上可导,则2.极值定义:设函数()y f x =在点0x 某邻域有定义,若对该邻域内一切x 都有 0()()f x f x >则0()f x 是函数()f x 的一个极大值,点0x 为函数()f x 的一个极大值点。

相关主题