当前位置:文档之家› 细胞遗传学

细胞遗传学

染色体原位杂交技术在植物研究中的应用摘要:染色体原位杂交(chromosome in situ hybridization,CISH)是一种新兴的日趋完善的技术。

本文从以下几个方面对其在植物研究中的应用进行了综述:(1)外源染色质及远缘杂种的鉴定;(2)多倍体起源、非整倍体的鉴定;(3)植物基因工程及基因表达研究;(4)物种进化及亲缘关系的探讨;(5)植物基因物理图谱的构建等。

关键词:染色体原位杂交;植物;细胞遗传学Abstract: In situ hybridization (chromosome in situ hybridization, CISH) is an emerging maturing technology. Its application in plant research are reviewed as follows: (1) exogenous chromatin and Identification of distant hybrids; (2) polyploid origin, identification of aneuploidy;(3) plant genetic engineering and gene expression studies; (4) the evolution of species and of kinship; (5)physical map construction of plant genes.Keywords: in situ hybridization; plants; cytogenetic引言原位杂交技术最早是由Gall和Parue[1]利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。

该技术是从Southern和Northern杂交技术衍生而来的,其中染色体原位杂交在原位杂交技术中应用最为广泛。

染色体原位杂交技术是根据核酸分子碱基互补配对原则,利用标记的DNA或寡核苷酸等探针同染色体上的DNA进行杂交,从而对染色体的待测核酸进行定位、定性或相对定量分析。

早期的染色体原位杂交技术,由于使用的探针为放射性标记,虽然该方法对于组织及染色体样本制备的要求不太高,且具有较高的灵敏度,但它不安全、不稳定、背景不理想,周期长,因而该技术发展较慢;然而20世纪80年代以后,非放射性探针的使用及PCR技术的发明,使得染色体原位杂交技术在动物及人类遗传学和分子生物学研究中迅速得到了广泛的应用,但在植物研究中一直很难有突破性的进展[2,3]。

原因主要是由于植物细胞较低的有丝分裂指数和细胞壁的存在。

随着植物染色体制备技术的改进,染色体显带技术、荧光标记技术、检测技术及电镜技术的发展和完善,染色体原位杂交技术在植物学研究上展示了更加广阔的应用前景。

1染色体原位杂交技术在植物研究中的应用1.1 在鉴定外源染色质及远缘杂种上的应用植物遗传育种研究中,通常通过远缘杂交把有利基因的野生种染色体片段渐渗到栽培种植物中,从而获得具有优良性状、有较高经济价值的杂种后代。

如带有几种抗病基因的黑麦1R染色体已被整合到许多高产的小麦品种中。

但野生种的DNA片段,即外源染色质是否真的整合到了栽培种的基因组中以及这种整合是否稳定,依赖于对外源染色体(质)的准确鉴定,而原位杂交技术是检测外源染色质的有效手段。

通过检测染色体易位,就能高效而便捷地鉴定外源染色质的存在与否,无需经过基因表达产物来推断[4]。

Heslop-Harrison等[5]利用GISH准确地确定了易位的黑麦染色体片段大小。

采用原位杂交技术,可以较容易地搞清楚远缘杂种的亲本染色体的存在情况。

如Schwarzacher等[6]用Secale africanum的基因组DNA作探针,与杂种(S.africanum×Hordeum chilense)根尖染色体杂交,发现在细胞分裂中期,其中7条染色体来自S.africanum,另外7条来自H. chilense。

1.2 在多倍体起源、非整倍体鉴定上的应用多倍化是自然界中很普遍的现象,70%的被子植物和大部分经济作物都是多倍体,在许多植物进化和物种形成以及多样化过程中发挥了关键作用。

染色体原位杂交技术作为一种有效手段,可对人工培育或天然多倍体植物的基因组之间亲缘关系、基因组组成及起源等方面进行研究。

Raina和Mukai[7]通过GISH实验对落花生属四倍体的栽培种落花生和野生种山地花生起源于二倍体绒毛花生A.villosa和A. ipaensis提供了有力的证据。

植物染色体的非整倍体是由于染色体行为异常,即可能是双亲配子染色体数目和结构差异引起或染色体亲缘关系较远,在细胞分裂过程中产生落后等现象导致,通过原位杂交可比较容易地检测出来。

关于非整倍体鉴定研究最多的就是初级三体。

由于某个物种的成套初级三体和部分三体,在基因定位、基因效应、分子标记和遗传连锁群研究上以及在染色体物理图谱构建和染色体工程、分子标记辅助育种上具有重要的作用,因此,出现了大量的对单体、三体的分子细胞遗传学研究。

李晓峰[8]利用FISH技术对大白菜2号、8号、10号染色体的三体和3号、6号染色体的双三体的根尖有丝分裂中期染色体进行了拟南芥25 S rDNA基因定位研究。

准确分析了25 S rDNA重复序列在大白菜不同三体上的分布情况。

1.3 在植物基因工程及基因表达研究上的应用随着转基因技术的快速发展,近些年出现了大量的转基因植物,如转基因大豆、转基因烟草、转基因棉花等。

通过转化对植物进行遗传改良,对基础和应用研究具有极大的价值和广阔的前景。

然而,转基因表达的不稳定性极大地阻碍了遗传转化系统的应用。

因此,对插入基因表达稳定性的影响因子的研究显得十分重要。

原位杂交可以检测整合于细胞染色体内的外源核酸序列,这要比通过检测基因表达产物来间接推断基因转移的传统方法要快速、简捷、高效、精确得多,这为转基因植物的鉴定提供了一条直观、可靠的新途径[9]。

转基因表达的一个重要影响因素就是位置效应,即转基因在受体细胞基因组中的位置。

如果原位杂交检测结果有特异的杂交信号,则表明抗病基因已经整合到该作物的核DNA中,并且通过核型分析,还能确定其整合到哪一条染色体上及其在染色体上的具体位置。

目前,在油菜、玉米、水稻等植物上已有较大进展。

Pederden等定位了转基因在转基因大麦、转基因小麦和转基因小黑麦染色体上的位置,确定了含转基因的染色体,同时研究了整合的形式,找到了优先的整合位点[10]。

1.4 在探讨物种进化及亲缘关系上的应用利用原位杂交技术,可以通过研究或鉴别基因组的类型及同源性来探讨物种进化及亲缘关系。

在探讨亲缘关系问题上通常采用基因组原位杂交,根据杂交信号位点的多少,判断同源程度,进一步推测物种间亲缘关系的远近。

黄东益等[11]对含多物种血缘的栽培甘蔗品种的原位杂交检测结果表明,在含三物种血缘的品种(Co419)中,热带种血缘居主导地位,其它2个祖亲种则表现为印度种血缘含量高于割手密种,而在四物种血缘的品种(ROC 5)中,随着杂交次数和血缘种类的增多,割手密种血缘的相对含量更少。

1.5 在构建植物基因物理图谱上的应用染色体原位杂交技术的应用已从最初的将特定DNA序列在染色体或间期核定位,发展到用单拷贝序列和多拷贝序列构建染色体的物理图谱。

染色体原位杂交是众多基因定位研究技术和方法中最为直接和简便的方法之一,通过它所构建的物理图谱能有效地克服两个标记的遗传距离与物理距离之间的偏差[12]。

Cheng等[13]以水稻的RFLP标记来估算这些标记在染色体上的实际距离,发现该染色体上有两个区域遗传距离与物理距离有较大差别。

大量研究表明:遗传图仅代表基因在染色体上的相对位置和它们之间的相对距离,图距是由重组值决定的,而且不同区域重组值的高低常受许多因素的影响,因此只有物理图才能反应基因或分子标记在染色体上的实际位置和相互之间的关系。

而染色体原位杂交在构建植物基因物理图谱上具有明显的优势,已成为一种最直接分析DNA序列在染色体或DNA分子上排列的分子细胞学技术,被广泛地应用于动植物基因结构的研究和DNA分子物理图谱的构建中。

2 展望随着染色体制片技术的不断改进以及组织化学和分子生物学技术的迅速发展,染色体原位杂交技术不断改进和完善,新的原位杂交技术不断涌现。

这些技术已在动物细胞遗传、人类医学研究领域中显示了极大优越性,在植物科学的研究中也同样具有十分广阔的应用前景。

随着植物分子细胞遗传学研究的不断深入,原位杂交技术将在鉴定外源染色质及远缘杂种、植物基因工程及基因表达研究、探讨物种进化及亲缘关系、构建植物基因物理图谱等领域有着更为广泛的应用。

同时,染色体原位杂交技术与PCR、Southern、Northern、Western杂交、RFLP、RAPD和AFLP等生物技术手段相结合,能有效弥补这些技术不能直观地将所转化的基因在染色体上的位置显示出来的不足。

随着非放射性原位杂交标记检测系统的日趋完善以及各种模式植物DNA序列测序计划的完成,植物原位杂交技术将在功能基因组学等研究领域中发挥重要作用。

参考文献:[1] Gall J G, PardueM L. Formation and detection of RNA-DNA hybrid moleculars in cytological preparation [ J]. Proc Natl Acad Sci ,USA, 1969, 63: 378-383.[2] 黄东益,郑成木.植物染色体原位杂交技术的研究进展[J].热带农业科学, 2000, 4(2): 62-68.[3] 李富生,何丽莲.原位杂交技术及其在甘蔗研究中的应用[J].农业生物技术科学, 2004, 20(4): 54-57.[4] 裴冬丽,李锁平.原位杂交技术在植物研究中的应用[J].河南农业学报, 2004, (2): 7-9.[5] Heslop-harrison J S,Schwarzacher T,Anamthwat-Jonson K,et a.l.In situ hybridization with automated chromosome denation[J].Technique, 1991, (3): 104-115.[6] SchwarzacherT,LeitchA R,BennetMt D,et al.In situ hybridization of parental genomes in a wide hybrid[ J]. Ann Bot,1989, 64: 315-324.[7] Raina S.N,MukaiY.Genomic in situ hybridization inArachis(Fabaceae) identifies the diploid wild progenitors of cultivated(A. hypogaea)and related wild(A.monticola)peanut species[J]. Plant Syst Evol ,1999, 214: 251-262.[8] 李晓峰.25S rDNA基因在部分大白菜初级三体上的FISH定位[C].河北:河北农业大学, 2004: 1-5.[9] 张乃群,董庆阁.原位杂交技术在植物研究中的应用[J].南都学坛:自然科学版,2000,20(3): 66-68.[10] 吴刚,崔海瑞,夏英武.原位杂交技术在植物遗传育种上的应用[J].植物学通报,1999,16(6): 625-630.[11] 黄东益.栽培甘蔗染色体组构成的细胞学分析与原位杂交检测的研究[C].儋州:华南热带农业大学, 1999.[12] 周琳,古红梅.植物染色体原位杂交研究进展[J]. 2000,17(5): 46-50.[13] Cheng Z K, Presting G G, Buell C R, et al .High-resolution pachytene chromosome mapping of bacterial artificiaI chromosomes anchored by genetic markers reveals the centromere location and distribution of genetic recombination along chromosome 10 of rice[J].Genetics, 2001, 157: 1 749-1757.。

相关主题