机械系统建模与仿真
机理建模法
所谓机理模型,实际上就是采用由一般到特殊的推理理演绎方法,对巳知结构、参数的物理系统运用相应的物理定律或定理,经过合理分析简化建立起来描述系统各物理员动、静态变化性能的数学模型。
因此,机理建模法主要是通过理论分析推导方法建立系统模型。
根据确定元件或系统行为所遵循的自然机理,如常用的物质不灭定律(用于液位、压力调节等)、能量守恒定律(用于温度调节等)、牛顿第二定律(用于速度、加速度调节等)、基尔霍夫定律(用于电气网络)等等,对系统各种运功规律的本质进行描述,包括质量、能量的变换和传递等过程,从而建立起变量间相互制约又相互依存的精确的数学关系。
通常情况下,是给出微分方程形式或其派生形式——状态方程、传
递函数等。
实验建模法
所谓实验建模法,就是采用出特殊到一般的逻辑归纳方法,根据一定数量的在系统运行过程中的实测、观察的物理量数据,运用统计规律、系统辨识等理论合理估计出反映系统各物理量相互制约关系的数学模型。
其主要依据是来自系统的大量实测数据.出此义称之为实验测定法。
当对所研究系统的内部结构和特性尚不清楚、甚至无法了解时,系统内部的机理变化规律就不能确定,通常称之为·黒箱”或“灰箱”问题,机理建模法也就无法应用。
而根据所测到的系统输入输出数据,采用一定方法进行分析及处理来获得数学模型的统计模型法正好适应这种情况。
通过对系统施加激励,观察和测取其响应,了解其内部変量的特性,并建立能近似反映同样变化的模拟系统的数学模型,就相当于建立起实际系统的数学描述(方程、曲线或图表等)。
(1)频率特性法
频率特性法是研究控制系统的一种应用广泛的工程实用方法。
其特点在是通过建立系统频率响应与正弦输入信号之间的稳态特性关系,不仅可以反映系统的稳态性能,而且可以用来研究系统的稳定性和暂态性能;可以根据系统的开环频率特性,判别系统闭环后的各种性能;可以较方便地分析系统参数对动态性能的影响,并能大致指出改善系统性能的途径。
(2)系统辨识法
系统辨识法是现代控制理论与系统建模中常用的方法,它是依据测量到的输人与输出数据来建方静态与动态系统的数学模型,但其输出响应不局限于频率响应,阶压响应或脉冲响应等时间响应都可作为反映系统模型静态与动态特性的重要信息;而且,确定模型的过程更依赖于各种高效率的最优算法以及如何保证所测取数据的可靠性。
因
其在实践中能得到很好的运用,故己被广泛接受,并逐渐发展成为较成熟队日臻完善的一门学科。
综合建模方法
在许多工程实际问题的建模过程中,还有这样一类问题:人们对其内部的结构与特性有部分了解,但又难以完全用机理建模的方法来描述,需要结合一定的实验方法确定另外一部分不甚了解的结构与特性,或者是通过实际测定来求取模型参数。
这种建模方法交际上就是将机理建模法与实验建模法有机地结合起来,故又称之为综合建模法。