幂零矩阵性质及应用数本041 严益水 学号:410401109摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
它具有一些很好的性质。
本文从矩阵的不同角度讨论了幂零矩阵的相关性质。
幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。
在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)(一) 一些概念1、令A 为n 阶方阵,若存在正整数k ,使0k A =,A 称为幂零矩阵。
2、若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数。
3、设1111n n nn a a A a a ⎛⎫⎪=⎪⎪⎝⎭,称1111n nnn a a A a a ⎛⎫⎪'= ⎪ ⎪⎝⎭为A 的转置, 称111*1n nnn A A A A A ⎛⎫⎪=⎪ ⎪⎝⎭为A 的伴随矩阵。
其中(,1,2,,)ij A i j n =为A 中元素ij a 的代数余子式4、设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为trA 。
5、主对角线上元素为0的上三角称为严格的上三角。
6、形为010(,)000001J t λλλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的矩阵称为若当块,其中λ为复数,由若干个若当块组成和准对角称为若当形矩阵。
7、()f E A λλ=-称为矩阵A 的特征多项式。
满足()0f E A λλ=-=的λ的值称为矩阵A 的特征值。
8、次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式。
(二)、一些引理引理1:设A ,B 为n 阶方阵,则()()***,AB B A AB B A '''==引理2:(),()A f E A m λλλ=-分别为矩阵A 的特征多项式和最小多项式,则有()0,()0A f A m A ==。
引理3:每一个n 阶的复矩阵A 都与一若当形矩阵相似,这个若当形矩阵除去若当块的排序外被矩阵A 唯一决定的,它称为A 的若当标准形。
引理4:若当形矩阵的主对角线上和元素为它的特征值。
引理5:n 阶复矩阵A 与对角矩阵相似的充分必要条件是A 和最小多项式无重根。
引理6:相似矩阵具有相同的特征值。
引理7:设12,,,n λλλ为n 阶矩阵A 的特征值,则有12n trA λλλ=+++,12n A λλλ=⋅⋅,且对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ。
引理8:k 阶若当块11k a J a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的最小多项式为()k x a -且有()0k k J aE -=。
引理9:矩阵匠最小多项式就是矩阵A 的最后一个不变因子。
引理10:A ,B 为n 阶复数域上的矩阵,若AB BA =,则存在可逆矩阵T ,使得112211n n T AT T BT λμλμλμ--⎛⎫⎛⎫⎪⎪**⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
引理11:任意n 阶A ,B 方阵,有()()tr AB tr BA =。
二、 幂零矩阵的性质(下面的性质来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、《高等代数选讲》 陈国利 中国矿业大学出版社、《高等代数习题集》(上册) 杨子胥 山东科学技术出版社、《关于幂零矩阵性质的探讨》 谷国梁 铜陵财经专科学校学报、《幂零矩阵的性质及应用》 韩道兰 罗雁 黄宗文 玉林师范学院学报并综合归纳得出关于幂零矩阵的十一条性质) 性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0。
证明:⇒A 为幂零矩阵 k Z +∴∃∈ .0k s tA =令0λ为A 任意一个特征值,则00,.s t A ααλα∃≠= 由引理7知,0k λ为k A 的特征值 00.k k s t A ββλβ∴∃≠= 从而有0k λ=0即有00λ=又有0k A =,知00kk A A A ==⇒= 0*(1)(1)00k k E A A A ∴-=-=-=-⋅= 00λ∴=为A 的特征值。
由0λ的任意性知,A 的特征值为0。
⇐A 的特征值全为0A ∴的特征多项式为()n f E A λλλ=-= 由引理2知,()0n f A A == 所以A 为幂零矩阵。
得证 性质2:A 为幂零矩阵的充分必要条件为0k k Z trA +∀∈=。
证明:⇒A 为幂零矩阵,由性质1,知:A 的特征值全为0 即120n λλλ====由引理7,知 k A 的特征值为120k k k n λλλ====从而有 120k k k k n trA λλλ=+++=⇐由已知,120k k k k n k Z trA λλλ+∀∈=+++=(1.1)令12,,,t λλλ为A 的不为0的特征值且i λ互不相同重数为(1,2,,)in i t =由(1.1)式及引理7,得方程组11222221122333112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩(1.2)由于方程组(1.2)的系数行列式为122221212121212121111()t t t tttttttt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-又(1,2,)ii t λ=互不相同且不为0,0B ∴≠从而知,方程(1.2)只有0解,即0(1,2,,)i n i t ==即A 没有非零的特征值A ∴的特征值全为0, 由性质1,得 A 为幂零矩阵 得证性质3:若A 为幂零矩阵,则A 的若当标准形J 的若当块为幂零若当块,且J和主对角线上的元素为0证明:A 为幂零矩阵, 由性质1,知 A 的特征值全为0 由引理3,知 在复数域上,存在可逆矩阵T ,使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理4,知(1,2,,)i i s λ=为J 和特征值又A 与J 相似,由引理6,知A 与J 有相同的特征值 所以0(1,2,,)i i s λ== 即J 的主对角线上的元素全为0由引理8,知 (0)()0(1,2,,)i i n n i i J E J i s -===12,,,s J J J 为幂零矩阵 得证性质4:若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-= 证明:A 为幂零矩阵,k Z +∴∃∈ .0k s tA =00kk A A A ∴==⇒= A 一定不可逆由性质1,得 A 的特征值为120n λλλ====由引理7,得,A E E A +-的特征值分别为1212011,101n n λλλλλλ'''''''''====+=====-=且有1211n n A E λλλ'''+=== 1211n n E A λλλ''''''-===即1,1A E E A +=-= 得证 性质5:若A E +为幂零矩阵,则A 非退化 证明:令12,,,n λλλ为A 的特征值若A 退化,则有 0A = 由引理7,得 120n A λλλ==∴至少存在0i λ=0为A 的特征值又由引理7,得 0110i λ+=≠为A E +的一特征值这与A E +为幂零矩阵矛盾 得证A 为非退化性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=又AB BA = ()00k k k k AB A B B ==⋅= AB ∴也为幂零矩阵 得证性质7:若A 为幂零矩阵且0k A =,则有121()k E A E A A A ---=++++1211231111()(1)(0)k k k mE A E A A A m m m mm---+=-+++-≠ 证明:0k A = k k k E E A E A ∴=-=-21()()k E A E A A A -=-++++即121()k E A E A A A ---=++++任意0m ≠,有[()]k k k k kA mE mE A mE A m E m∴=+=+=+ 211121111()((1))k k k A m E E A A A m m mm ---=+-+++-211121111()((1))k k k mE A E A A A m m m---=+-+++- 即有2111211111()((1))k k k mE A E A A A E m m mm---+⋅-+++-=1211121211231111()((1))111(1)k k k k k k mE A E A A A m m m mE A A A m m m m------∴+=-+++-=-+++-性质8:若A 为幂零矩阵且A 0≠,则A 不可对角化但对任意的n 阶方阵B ,存在幂零矩阵N ,使得B N +可对角化 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=且A 的特征值全为零()n f E A λλλ=-=为A 的特征多项式且()0n f A A ==令()A m λ为A 的最小多项式,则有()|()A m f λλ 从而有00()(1)k A m k n λλ=≤≤由于0A 0,k 1≠∴>,又此时 00()2k A m k λλ=≥即A 的最小多项式有重根,由引理5,知 A 不可对角化 B 为n 阶方阵 由引理3,知 在复数域上,存在可逆矩阵T ,使得121s J J T BT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =令 i ii i D λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =则有0110i i i J J D ⎛⎫ ⎪⎪'=-= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理8,知(0)()0i i i n n i n i J E J ''-⋅== 即i J '为幂零矩阵(1,2,,)i s =现令12s J J J J ⎛⎫' ⎪ ⎪''= ⎪ ⎪ ⎪ ⎪'⎝⎭12s D D D D ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭1112122s s s J D J J J D T BT J D J J D -⎛⎫'+⎛⎫ ⎪⎪ ⎪'+⎪'===+ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭'+⎝⎭即111()(1)B T J D T TJ T TDT ---''=+=+又D 为对角阵,由(1)式知 11B TJ T TDT --'-=可对角化 令N =1TJ T -'- 且取 12max(,,,)s k n n n = 则有120k kkk s J J J J ⎛⎫' ⎪ ⎪''==⎪ ⎪ ⎪ ⎪'⎝⎭111112()()()()()00kkk k k k kk k s J J N TJ T T J TT T T T J ----⎛⎫' ⎪ ⎪'''=-=-=-=-=⎪ ⎪ ⎪ ⎪'⎝⎭即有B N +可对角化且N 为幂零矩阵 得证性质9:n 阶幂零矩阵的幂零指数小于等于n 且幂零指数等于其若当形矩阵中阶数最高的若当块的阶数证明;令A 为n 阶幂零矩阵 由性质3知, 存在可逆矩阵T 使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =且()0i n i J = 1(1,2,,)i n n i s ≤≤=取12max(,,,)s k n n n =,则k n ≤ 且有1121112()00(1.5)k kkk k s s J J J J A T T T T T T J J ---⎛⎫⎛⎫⎪⎪⎪⎪===⋅⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭即0k A =若令0k 为A 的幂零指数,则0k k n ≤≤ 00k A = 若0k k <,则000.i i s t n k ∃> 且000k i J ≠由(1.5)式,得0000112112()0k k k k k s s J J J J A T T T T J J --⎛⎫⎛⎫⎪⎪⎪⎪==≠ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭这与00k A =矛盾。