当前位置:文档之家› 线性代数二次型习题及答案

线性代数二次型习题及答案

第六章 二次型1.设方阵1A 与1B 合同,2A 与2B 合同,证明12A ⎛⎫⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同.证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 12⎛⎫=⎪⎝⎭C C C ,则C 可逆,于是有TT 1111111T2222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭B C A C C AC B C A C C A C 1T 2⎛⎫= ⎪⎝⎭A C C A 即 12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫⎪⎝⎭B B 合同. 2.设A 对称,B 与A 合同,则B 对称证:由A 对称,故T =A A .因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是T T T T T T ()====B C AC C A C C AC B即B 为对称矩阵.3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵.证:因为A 是正定矩阵,所以存在可逆矩阵M ,使E AM M =T记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使T 11diag(,,)n D μμ==Q B QT 11,,.n μμ=B M BM 其中为的特征值令P=MQ ,则有D BP PE AP P ==T T ,,A B 同时合同对角阵.4.设二次型2111()mi in n i f a x a x ==++∑,令()ij m n a ⨯=A ,则二次型f 的秩等于()r A .证:方法一 将二次型f 写成如下形式:2111()mi ij j in n i f a x a x a x ==++++∑设A i = 1(,,,,)i ij in a a a ),,1(m i =则 1111111jn i ij in i m mj mj m a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A于是 1T T T TT 11(,,,,)mi m i i i i m =⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∑A A A A A A A A A A故 2111()mi ij j in n i f a x a x a x ==++++∑=1211[(,,)]i m j n ij i in a x x x a a =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑=11111[(,,)(,,)]i mj n ij i ij in j i in n a x x x x a a a a x a x =⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑=1T11(,,)()mj n i i j i n x x x x x x =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑A A=X T (A T A )X因为A A T 为对称矩阵,所以A A T 就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .方法二 设11,1,,i i in n y a x a x i n =++=. 记T 1(,,)m y y =Y ,于是 =Y AX ,其中T 1(,,)n x x =X ,则222T T T 11()mi m i f y y y ===++==∑Y Y X A A X .因为A A T 为对称矩阵,所以A A T 就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .5.设A 为实对称可逆阵,T f x x =A 为实二次型,则A 为正交阵⇔可用正交变换将f 化成规范形.证:⇒设i λ是A 的任意的特征值,因为A 是实对称可逆矩阵,所以i λ是实数,且0,1,,i i n λ≠=.因为A 是实对称矩阵,故存在正交矩阵P ,在正交变换=X PY 下,f 化为标准形,即T T T T T 1()diag(,,,,)i n f λλλ====X AX Y P AP Y Y DY Y Y22211i i n n y y y λλλ=++++ (*)因为A 是正交矩阵,显然T 1diag(,,,,)i n λλλ==D P AP 也是正交矩阵,由D 为对角实矩阵,故21i λ=即知i λ只能是1+或1-,这表明(*)恰为规范形.⇐因为A 为实对称可逆矩阵,故二次型f 的秩为n . 设在正交变换=X QY 下二次型f 化成规范形,于是T T ()f ==X AX Y Q AQ Y 222211r r n y y y y +=++---T =Y DY 其中r 为f 的正惯性指数,diag(1,,1,1,,1)=--D .显然D 是正交矩阵,由T =D Q AQ ,故T =A QDQ ,且有T T ==A A AA E ,故A 是正交矩阵.6.设A 为实对称阵,||0<A ,则存在非零列向量ξ,使T 0<ξAξ. 证:方法一因为A 为实对称阵,所以可逆矩阵P ,使T 1diag(,,,,)i n λλλ==P AP D其中(1,,)i i n λ=是A 的特征值,由||0<A ,故至少存在一个特征值k λ,使0k λ<,取010⎛⎫⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ξP ,则有T T0(0,,1,,0)10⎛⎫⎪⎪⎪= ⎪⎪⎪⎝⎭ξAξP AP 1(0,,1,0,0)kn λλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭010⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭0k λ=<方法二(反证法)若∀≠X 0,都有T 0≥X AX ,由A 为实对称阵,则A 为半正定矩阵,故||0≥A 与||0<A 矛盾.7.设n 元实二次型AX X T =f ,证明f 在条件122221=+++n x x x 下的最大值恰为方阵A 的最大特征值.解:设f n 是λλλ,,,21 的特征值,则存在正交变换=X PY ,使2222211T T T )(n n y y y f λλλ+++=== Y AP P Y AX X设k λ是n λλλ,,,21 中最大者,当122221T =+++=n x x x X X 时,有 122221T T T T =+++===n y y y Y Y PY P Y X X因此k n k n n y y y y y y f λλλλλ≤+++≤+++=)( 222212222211这说明在22221n x x x +++ =1的条件下f 的最大值不超过k λ.设 T T 10)0.,0,1,0,,0(),,,,( ==n k y y y Y 则 10T 0=Y Yk n n k k y y y y f λλλλλ=+++++=22222211令00PY X =,则1T 00T0==Y Y X X并且k f λ===0T T 00T00)()(Y AP P Y AX X X这说明f 在0X 达到k λ,即f 在122221=+++n x x x 条件下的最大值恰为方阵A 的最大特征值.8.设A 正定,P 可逆,则T P AP 正定.证:因为A 正定,所以存在可逆矩阵Q ,使T =A Q Q , 于是 T T T T ()==P AP P Q QP QP QP ,显然QP 为可逆矩阵,且T T T T ()()==P AP QP QP P AP ,即T P AP 是实对称阵,故T P AP 正定.9.设A 为实对称矩阵,则A 可逆的充分必要条件为存在实矩阵B ,使AB +A B T 正定. 证:先证必要性取1-=B A ,因为A 为实对称矩阵,则2E A A E A B AB =+=+-T 1T )(当然A B AB T +是正定矩阵. 再证充分性,用反证法.若A 不是可逆阵,则r (A )<n ,于是存在00,≠=X AX 使00因为A 是实对称矩阵,B 是实矩阵,于是有0 )()()(0T T 00T 00T T 0=+=+AX B X BX AX X A B AB X这与AB T +AB B A 是正定矩阵矛盾.10.设A 为正定阵,则2*13-++A A A 仍为正定阵.证:因为A 是正定阵,故A 为实对称阵,且A 的特征值全大于零,易见2*1,,-A A A 全是实对称矩阵,且它们的特征值全大于零,故2*1,,-A A A 全是正定矩阵,2*13-++A A A 为实对称阵. 对∀≠X 0,有T 2*1T 2T *T 1(3)0--++=++>X A A A X X A X X A X X A X即 2*13-++A A A 的正定矩阵.11.设A 正定,B 为半正定,则+A B 正定.证:显然,A B 为实对称阵,故+A B 为实对称阵. 对∀≠X 0,T 0>X AX ,T 0≥X BX ,因T ()0+>X A B X ,故+A B 为正定矩阵.12.设n 阶实对称阵,A B 的特征值全大于0,A 的特征向量都是B 的特征向量,则AB 正定.证:设,A B 的特征值分别为,(1,,)i i i n λμ=. 由题设知0,0,1,,i i i n λμ>>=.因为A 是实对称矩阵,所以存在正交矩阵1(,,,,)i n =P P P P ,使T 1diag(,,,,)i n λλλ=P AP即 ,i i i i λ=AP P P 为A 的特征向量,1,,i n =. 由已知条件i P 也是B 的特征向量,故1,,,i i ii i n μ==BP P因此 ()i i i i i i μλμ==ABP A P P ,这说明i i λμ是AB 的特征值,且0i i λμ>,1,,i n =.又因为 T 111diag(,,,,),i i n n λμλμλμ-==ABP P P P . 故 11diag(,,,,)i i n n λμλμλμ=AB P P ,显然AB 为实对称阵,因此AB 为正定矩阵.13.设n n ij a ⨯=)(A 为正定矩阵,n b b b ,,,21 为非零实数,记()ij i j n n a b b ⨯=B则方阵B 为正定矩阵.证:方法一 因为A 是正定矩阵,故A 为对称矩阵,即ji ij a a =,所以i j ji j i ij b b a b b a =,这说明B 是对称矩阵,显然211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫⎪ ⎪= ⎪ ⎪⎪⎝⎭B =1111110000n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 对任给的n 维向量1(,,)T 0n x x =≠X ,因n b b b ,,,21 为非零实数,所以),,(11n n x b x b T 0≠,又因为A 是正定矩阵,因此有1111110000TTn n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X BX X X =),,(11n n x b x b 1111n n nn a a a a ⎛⎫⎪ ⎪⎝⎭11n n b x b x ⎛⎫ ⎪ ⎪⎝⎭0> 即B 是正定矩阵.方法二 记211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫ ⎪= ⎪⎪ ⎪⎝⎭B则因为A 是实对称矩阵,显然B 是实对称矩阵,B 的k 阶顺序主子阵k B 可由A 的阶顺序主子阵分别左,右相乘对角阵100n b b ⎛⎫⎪ ⎪⎝⎭而得到,即 =k B 1111110000k k k kk k a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算k B 的行列式,有012>=∏=k k A B ni i b故由正定矩阵的等价命题知结论正确.14.设A 为正定矩阵,B 为实反对称矩阵,则0>+B A .证:因为M 是n 阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M 的特征值及特征向量写成复数形式,进一步可以证明对于n 阶实矩阵M ,如果对任意非零列向量X ,均有0T >MX X可推出M 的特征值(或者其实部)大于零. 由于M 的行列式等于它的特征值之积,故必有0>M .因为A 是正定矩阵,B 是反对称矩阵,显然对任意的 非零向量X ,均有,0)(T >+X B A X而A +B 显然是实矩阵,故0>+B A .15.设A 是n 阶正定矩阵,B 为n ⨯m 矩阵,则r (B T AB )=r (B ). 证:考虑线性方程组T 00==BX B ABX 与,显然线性方程组0=BX T 0=B ABX 的解一定是的解.考虑线性方程组T 0=B ABX ,若0X 是线性方程组T 0=B ABX 的任一解,因此有0T 0=B ABX . 上式两端左乘有T 0XT 00()()0=BX A BX因为A 是正定矩阵,因此必有00=BX ,故线性方程组0=BX 与 T 0=B ABX 是同解方程组,所以必有r (B T AB )= r (B ).16.设A 为实对称阵,则存在实数k ,使||0k +>A E . 证:因为A 为实对称阵,则存在正交矩阵P ,使11diag(,,,,)i i λλλ-=P AP .其中i λ为A 的特征值,且为实数,1,,2i =. 于是 11diag(,,,,)i n λλλ-=A P P11||||||i n kk kkλλλ-++=++A E PP 1()ni i k λ==+∏取1max{||1}i i nk λ≤≤=+,则1()0ni i k λ=+>∏,故 ||0k +>A E .17.设A 为n 阶正定阵,则对任意实数0k >,均有||n k k +>A E . 证:因为A 为正定矩阵,故A 为实对称阵,且A 的特征值0,1,,i i n λ>=. 则存在正交矩阵P ,使1111,iin n λλλλλλ--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP A P P 于是对任意0k >,有11||||||i n kk kkλλλ-++=++A E PP 1()ni i k λ==+∏1ni k =>∏n k =.18.设A 为半正定阵,则对任意实数0k >,均有||0k +>A E .证:因为A 为半正定矩阵,故A 为实对称矩阵,且A 的特征值0i λ≥,1,,i n =. 则存在正交矩阵P ,使11diag(,,,,)i n λλλ-=P AP ,11diag(,,,,)i n λλλ-=A P P 于是对任意0k >,有11||||diag(,,,,)||i n k k k k λλλ-+=+++A E P P 1()ni i k λ==+∏n k ≥0>.19.A 为n 阶实矩阵,λ为正实数,记T λ=+B E A A ,则B 正定. 证:T T T T ()λλ=+=+=B E A A E A A B ,故B 是实对称矩阵. 对∀≠X 0,有(,)0,(,)0>≥X X AX AX ,因此有T T T ()λ=+X BX X E A A X T T T λ=+X X X A AX (,)(,)λ=+X X AX AX 0> 故 T λ=+B E A A 为正定矩阵.20.A 是m ⨯n 实矩阵,若A A T 是正定矩阵的充分必要条件为A 是列满秩矩阵.证:先证必要性方法一设A A T 是正定矩阵,故00∀≠X ,有0)()()(0T 00T T 0>=AX AX X A A X由此00≠AX ,即线性方程组0=AX 仅有零解,所以r (A )=n ,即A 是列满秩矩阵.方法二因为A A T 是正定矩阵,故r(A A T )=n ,由于n r r n ≤≤≤)()(T A A A所以r (A )=n . 即A 是列满秩矩阵.再证充分性:因A 是列满秩矩阵,故线性方程组仅有零解,0∀≠X ,X 为实向量,有0≠AX .因此0),()()()(T T T >==AX AX AX AX X A A X显然A A T 是实对称矩阵,所以A A T 是正定矩阵.21.设A 为n 阶实对称阵,且满足2640-+=A A E ,则A 为正定阵.证:设λ为A 的任意特征值,ξ为A 的属于特征值λ的特征向量,故≠ξ0,则22,λλ==A ξξA ξξ由 2640-+=A A E 有 264-+=A ξAξξ02(64)λλ-+=ξ0由 ≠ξ0,故 2640λλ-+=.30λ=±>. 因为A 为实对称矩阵,故A 为正定阵.22.设三阶实对称阵A 的特征值为1,2,3,其中1,2对应的特征向量分别为T T 12(1,0,0),(0,1,1)==ξξ,求一正交变换=X PY ,将二次型T f =X AX 化成标准形.解:设T 3123(,,)x x x =ξ为A 的属于特征值3的特征向量,由于A 是实对称矩阵,故123,,ξξξ满足正交条件12312310000110x x x x x x ⋅+⋅+⋅=⎧⎨⋅+⋅+⋅=⎩ 解之可取3(0,1,1)=-ξ,将其单位化有T TT123(1,0,0),,===P P P 令123100(,,)00⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎝P P P P .则在正交变换=X PY 下,将f 化成标准形为T T T 222123()23f y y y ===++X AX Y P AP Y23.设1222424a a -⎛⎫⎪=- ⎪ ⎪⎝⎭A二次型T f =X AX 经正交变换=X PY 化成标准形239f y =,求所作的正交变换.解:由f 的标准形为239f y =,故A 的特征值为1230,9λλλ===.故 2122||24(9)24a aλλλλλλ---=--=----E A令0λ=,则 12224024a a ----=---解之 4a =-.由此 122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A 对于120λλ==有1221220244000244000---⎛⎫⎛⎫⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭E A 可得A 的两个正交的特征向量12222,112-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ对于39λ=,可得A 的特征向量为122⎛⎫⎪- ⎪ ⎪⎝⎭将特征向量单位化得1232211112,1,2333122-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P则1232211(,,)2123122-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P P P P 为正交矩阵, 正交变换=X PY 为22112123122-⎛⎫ ⎪=- ⎪ ⎪⎝⎭X Y . 注:因特征向量选择的不同,正交矩阵P 不惟一.24.已知二次型22212312132(1)22f x x k x kx x x x =++-++正定,求k . 解:二次型的表示矩阵1120101kk k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A由A 正定,应有A 的各阶顺序主子式全大于0. 故 102||0kk A ⎧>⎪⎨⎪>⎩,即2220(2)0k k k k ⎧-<⎪⎨-->⎪⎩. 解之 10k -<<.25.试问:三元方程2221231213231233332220x x x x x x x x x x x x +++++---=,在三维空间中代表何种几何曲面.解:记222123121323123333222f x x x x x x x x x x x x =+++++---则 111232233311(,,)131(1,1,1)113x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=+--- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设 311131113⎛⎫⎪= ⎪ ⎪⎝⎭A . 则2||(2)(5)λλλ-=--E A . 故A 的特征值为1232,5λλλ===.对于122λλ==,求得特征向量为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.由Schmidt 正交化得1212111,201⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ββ.对于35λ=得特征向量3111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,标准化得123,,0⎛⎛ ⎪=== ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭P P P 令123(,,)0⎛==⎝P P P P 则在正交变换=X PY 下2221233225f y y y =++于是0f =为2221233225(1020y y y ++-= 为椭球面.26.求出二次型222123123123(2)(2)(2)f x x x x x x x x x =-+++-+++-的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有2221231213234442f x x x x x x x x x =++--+2221231213234424x x x x x x x x x +++-+-2221231213234244x x x x x x x x x ++++--222123121323666666x x x x x x x x x =++---2221231213236()x x x x x x x x x =++---2221232323113336[()]22442x x x x x x x =--++-22123231196()()222x x x x x =--+-令 1123223331122y x x x y x x y x⎧=--⎪⎪=-⎨⎪=⎪⎩即 11223311122011001y x y x y x ⎛⎫--⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则可逆变换为1122331112011001x y x y x y ⎛⎫ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭在此可逆线性变换下f 的标准形为2212962f y y =+. 27.用初等变换和配方法分别将二次型(1)222112412142432442f x x x x x x x x x =--++-+ (2)2122313262f x x x x x x =-+化成标准形和规范形,并分别写出所作的合同变换和可逆变换. 解:先用配方法求解(1)2221112142424(44)322f x x x x x x x x x =-+--++2221242424(22)66x x x x x x x =--+++-222124244(22)(3)3x x x x x x =--++--令 11242243344223y x x x y x x y x y x =-+⎧⎪=-⎪⎨=⎪⎪=⎩ 即 11242243344243x y y y x y y x y x y =++⎧⎪=+⎪⎨=⎪⎪=⎩令 1204010300100001⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型f 经可逆线性变换=x Py 化成标准形22211243f y y y =-+-若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即11223344y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令1113⎛⎫ ⎪⎪⎪=⎝⎭Q 则原二次型1f 经可逆线性变换=x PQz 化成规范形2221124f y y y =-+-.(2)先线性变换11221233x y y x y y x y=+⎧⎪=-⎨⎪=⎩原二次型化成22212132313232()6622f y y y y y y y y y y =--+++221213232248y y y y y y =--+2221322332()282y y y y y y =--+-222132332()2(2)6y y y y y =---+令113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,即113223332y z z y z z y z =+⎧⎪=+⎨⎪=⎩. 令1110110001⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,2101012001⎛⎫⎪= ⎪ ⎪⎝⎭P则原二次型2f 经可逆线性变换12=x P P z 化成标准形2222123226f z z z =-+若再令112233w w w ⎧=⎪⎪=⎨⎪=⎪⎩即11223322z w z w z w ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令22⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝⎭Q则原二次型2f 经可逆线性变换12=x P P Qw 化成规范形2222123f w w w =-+.用初等变换法求解(1)设1202230100002102--⎛⎫⎪- ⎪= ⎪⎪ ⎪-⎝⎭A41202100023010100()0000001021020001--⎛⎫⎪-⎪= ⎪ ⎪ ⎪-⎝⎭A E 2121221021000010321000000001023020001r r c c +⨯+⨯--⎛⎫⎪- ⎪−−−→ ⎪ ⎪⎪--⎝⎭ 4141(2)(2)10001000010321000000001003062001r r c c +-⨯+-⨯-⎛⎫⎪- ⎪−−−−→ ⎪ ⎪ ⎪--⎝⎭4242331001000010021000000001000034301r r c c +⨯+⨯-⎛⎫⎪⎪−−−→ ⎪ ⎪⎪-⎝⎭331000100001002100000001000010r c -⎛⎫ ⎪ ⎪ ⎪→ - ⎝令 T11000210000104301⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P ,T21000210000100⎛⎫ ⎪⎪ ⎪=P则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211233f y y y =-+-.二次型经过可逆线性变换2=x P z 化成规范形2221124f z z z =-+-.(2)设011103130⎛⎫⎪=- ⎪ ⎪-⎝⎭A 3011100()103010130001⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A E 3232(1)(1)0101010*******011r r c c +-⨯+-⨯⎛⎫⎪−−−−→- ⎪ ⎪--⎝⎭ 313133010100100010006311r r c c +⨯+⨯⎛⎫ ⎪−−−→ ⎪ ⎪-⎝⎭1212210100100010006311r r c c ++⎛⎫⎪−−−→ ⎪ ⎪-⎝⎭ 21211()21()2200110111000222006311r r c c +-⨯+-⨯⎛⎫⎪⎪−−−−→-- ⎪ ⎪-⎝⎭112233,,,10000100001266r c r r c ⎛⎫⎪ ⎪ ⎪→- ⎪ -⎝⎭令 T 111011022311⎛⎫ ⎪ ⎪=- ⎪ ⎪-⎝⎭P ,T200266⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭P则原二次型2f 经过可逆线性变换1=x P y 化成标准形22221231262f y y y =-+ 二次型经过可逆线性变换2=x P z 化成规范形2222123f z z z =-+28.用三种不同方法化下列二次型为标准形和规范形.(1)2221122332343f x x x x x =+++(2)222221234121423342222f x x x x x x x x x x x x =++++--+ 解:先用配方法求解(1)222112233423()33f x x x x x =+++22212332523()33x x x x =+++ 令 112233323y x y x x y x =⎧⎪⎪=+⎨⎪=⎪⎩ 即 112233323x y x y y x y =⎧⎪⎪=-⎨⎪=⎪⎩令 1002013001⎛⎫ ⎪⎪=- ⎪ ⎪⎝⎭P则二次型1f 经可逆线性变换=x Py 化成标准形22211235233f y y y =++ 若再令112233z z z y ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 即11223323y z y z y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令35⎫⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭Q原二次型1f 经可逆线性变换=x PQz 化成规范形2221123f z z z =++.(2)22222112142342334(22)22f x x x x x x x x x x x x =+-+++-+221243233424()222x x x x x x x x x x =+-+-++2222124324244()()(2)3x x x x x x x x x =+-+-+--+令 11242243234442y x x x y x x y x x x y x =+-⎧⎪=-⎪⎨=-++⎪⎪=⎩ 即 11242243234442x y y y x y y x y y y x y =--⎧⎪=+⎪⎨=++⎪⎪=⎩ 令 110101020*******--⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型2f 经可逆线性变换=x Py 化成标准形2222212343f y y y y =-++若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即112233443y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 原二次型2f 经可逆线性变换=x PQz 化成规范形222221234f z z z z =-++.用初等变换法求解(1)设200032023⎛⎫⎪= ⎪ ⎪⎝⎭A3200100()032010023001⎛⎫⎪= ⎪ ⎪⎝⎭A E 32322()32()320010*********000133r r c c +-⨯+-⨯⎛⎫⎪ ⎪−−−−→ ⎪ ⎪- ⎪⎝⎭ 112310000010000010155r c r c ⎛⎫ ⎪⎪⎪→ ⎪ - ⎝⎭令 TT1200100010,0020130⎫⎪⎛⎫ ⎪⎪ ⎪⎪== ⎪⎪ ⎪ - ⎪ ⎝⎭⎝P P 则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211235233f y y y =++. 二次型经过可逆线性变换2=x P z 化成规范形2221123f z z z =++.(2)设1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A 411011*********00()0111001010110001-⎛⎫⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A E 2121(1)(1)10011000001111000111001011110001r r c c +-⨯+-⨯-⎛⎫⎪-- ⎪−−−−→ ⎪- ⎪ ⎪-⎝⎭41411001000001111000111001001101001r r c c ++⎛⎫ ⎪-- ⎪−−−→ ⎪- ⎪ ⎪⎝⎭323210001000001111000112111001201001r rc c++⎛⎫⎪--⎪−−−→⎪---⎪⎪⎝⎭343410001000000111000032011101201001r rc c++⎛⎫⎪-⎪−−−→⎪⎪⎪⎝⎭3232(2)(2)10001000000111000030211101001001r rc c+-⨯+-⨯⎛⎫⎪-⎪−−−−→⎪-⎪⎪⎝⎭242410001000020101010030211101001001r rc c++⎛⎫⎪⎪−−−→⎪-⎪⎪⎝⎭42421()21()210001000020001010030211111100010222r rc c+-⨯+-⨯⎛⎫⎪⎪−−−−→ ⎪-⎪⎪--⎪⎝⎭22334410001000010000001033330001022r cr cr c⎛⎫⎪→ ⎪-⎪--⎝⎭令T1100001012111111022⎛⎫⎪⎪= ⎪-⎪⎪-⎪⎝⎭PT21000003333⎛⎫⎪= ⎪-⎪⎝P则原二次型2f可经可逆线性变换1=x P y化成标准形2222212341232f y y y y=++-. 2f可经可逆线性变换2=x P z化成规范形222221234f z z z z=++-用正交变换法求解(1)1f的矩阵为200032023⎛⎫⎪= ⎪⎪⎝⎭A,由 200||032(1)(2)(5)023λλλλλλλ--=--=-----E A ,知A 的特征值为1,2,5.对11λ=,解123100002200220x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得123011x x k x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,取1011⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,单位化102⎛⎫ ⎪ ⎪ ⎪= ⎪⎝P ,对22λ=,解123000001200210x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得123100x x k x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取2100⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,对35λ=解123300002200220x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得123011x x k x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 取3011⎛⎫ ⎪= ⎪ ⎪⎝⎭T ,单位化得30⎛⎫ ⎪=P ,令01000⎛⎫ ⎪= ⎝P ,则P 为正交阵,经正交变换=X PY ,原二次型f 化为T 22212325f y y y ==++X AX .(2)2f 的矩阵为 1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A 由 11011110||0111111λλλλλ-----=----E A 2(1)(3)(1)λλλ=+--知A 的特征值为1,3,1,1-.对11λ=-,解12342101012100,0121010120x x x x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 得 12341111x x k x x ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取11111⎛⎫ ⎪- ⎪= ⎪- ⎪ ⎪⎝⎭T 单位化得112121212⎛⎫ ⎪ ⎪ ⎪- ⎪= ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭P ,对23λ=,解12342101012100,0121010120x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12341111x x k x x -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 取 21111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭T 单位化得 212121212⎛⎫- ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P . 对341λλ==,解12340101010100,010*******x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12123410011001x x k k x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取 341001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T ,再令340202,00⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪==⎪ ⎪⎝⎭P P 令1102211022110222110222⎛⎫-⎪ --⎪= ⎪-⎪ ⎝⎭P ,则P 为正交阵,经正交变换=X PY ,原二次型f 化为T 222212343f y y y y ==-+++X AX .29.判断下列二次型正定,负定还是不定.(1)2221223121326422f x x x x x x x =---++ 解:二次型1f 的矩阵为211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭AA 的各阶顺序全子式2112120,110,1603801614---<=>-=-<--. 所以二次型1f 是负定二次型.(2)22222123412131424343919242612f x x x x x x x x x x x x x x =+++-++-- 解:二次型2f 的矩阵为11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪ ⎪--⎝⎭AA 的各阶顺序主子式1110,2013->=>-,1121306029--=>,11211303240209613619---=>---所以二次型2f 是正定二次型.(3)222231234131423147644f x x x x x x x x x x =+++++- 解:二次型3f 的矩阵为10320120321402007⎛⎫⎪-⎪= ⎪- ⎪ ⎪⎝⎭A A 的各阶顺序主子式1010,1001>=>,103012103214-=>-,1320120330321402007-=-<-. 所以二次型3f 是不定二次型.30.求一可逆线性变换=X CY ,把二次型2221123121325424f x x x x x x x =++--化成规范形2221123f y y y =++,同时也把二次型22221231313233322242f x x x x x x x x x =++--- 化成标准形2222112233f k y k y k y =++.解:记T 1f =X AX ,其中212150204--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A31213121121220021290115022040121001112010*********r r r r c c c c ++++⎛⎫ ⎪--⎛⎫ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪--⎛⎫ ⎪=−−−→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭A E 323229292009002160091101292019001r r c c ++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12312334341000100015661063004r r r c c c ⨯⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪−−−→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭取5661036004⎛⎫⎪⎪⎪⎪= ⎪ ⎪3 ⎪ ⎪⎝⎭P ,则T =P AP E 记 T 2f =X BX,其中3012032122⎛⎫- ⎪ ⎪=- ⎪ ⎪-- ⎪⎝⎭B则T150036601210032061225133006644⎛⎫⎫⎪⎪⎛⎫-⎪⎪ ⎪ ⎪⎪ ⎪ ⎪==-⎪ ⎪ ⎪ ⎪ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭B P BP5066104636113100234⎛⎫⎫⎪⎪⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭314413444142⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-⎪⎪⎭2311113442⎛⎫== ⎪⎭B 其中231132⎛⎫ = ⎪⎭B 显然12,B B 都是实对称矩阵,它们的特征值为14倍的关系,特征向量相同.231||13λλλ---=--EB 30(3)14)1(3)04)4λλλλλ---=----2(4)0λλ=-=则2B 的特征值为230,4λλλ===, 故1B 的特征值为0,1,1. 以下求2B 的特征向量.对于10λ=,求得11⎛ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭α,单位化后11212⎛⎫- ⎪ ⎪ ⎪= ⎪ ⎪γ 对于234λλ==,求得2311,001⎛⎫⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭αα 由Schmidt 标准正交化后得23121,20⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭γγ令123112211(,,)220⎛⎫- ⎪ ⎪ ⎪==-⎪ ⎪Q γγγ. 则Q 为正交矩阵,且有T T T 10()11⎛⎫ ⎪== ⎪ ⎪⎝⎭Q B Q Q P BP Q令5116221110622304⎛⎫⎛⎫⎪- ⎪⎪ ⎪⎪ ⎪⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭CPQ 23130⎫⎪⎪=⎪⎪⎭ 于是 T T T ==Q P APQ Q EQ E即 T =C AC ET 011⎛⎫ ⎪= ⎪ ⎪⎝⎭C BC在可逆线性变换=X CY 下2221123f y y y =++ 22223f y y =+.(注:经验算本题所得C 是正确的,需要注意的是C 并不惟一)31.求一可逆线性变换=X PY ,将二次型f 化成二次型g .2221231213232938410f x x x x x x x x x =+++-- 222123121323236448g y y y y y y y y y =++--+解:T f =X AX ,242495253-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , Tg =Y BY ,222234246--⎛⎫⎪=- ⎪ ⎪-⎝⎭B将,A B 分别作合同变换如下:21313221323122242200200495011010253011000100121121010010011001001001r r r r r r c c c c c c -++-++-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E在可逆线性变换1=X C Z 下22122f z z =+ 其中 1121011001--⎛⎫ ⎪= ⎪ ⎪⎝⎭C 21313221323122220020023401201024602400100111111010010012001001001r r r r r r c c c c c c ++++++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B E在可逆线性变换2=Y C Z 下22122g z z =+.其中 2111012001-⎛⎫⎪=- ⎪ ⎪⎝⎭C 由 12-=Z C Y 得1112-==X C Z C C Y令 1112121111136011012003001001001-------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭P C C 在可逆线性变换=X PY 下22122f g z z ==+.32.A 是正定矩阵,AB 是实对称矩阵,则AB 是正定矩阵的充分必要条件是B 的特征值全大于零. 证:先证必要性.设λ 为B 的任一特征值,对应的特征向量为,,0≠X X 则 且有X BX λ=用A X T 左乘上式有AX X X AB X T T )(λ=因为AB ,A 都是正定矩阵,故0,0)(T T >>AX X X AB X于是0>λ,即B 的特征值全大于零.再证充分性.因为A 是正定矩阵,所以A 合同于单位矩阵,故存在可逆矩阵P ,使E AP P =T (1)由AB 是对称矩阵,知P AB P )(T 也是实对称矩阵,因此存在正交矩阵Q ,使),,,,diag(])([1T T n i μμμ ==D Q P AB P Q (2)即有),,,,diag()()(1T T n i μμμ ==D PQ B A P Q (3)其中n i μμμ,,,,1 是P AB P )(T 的特征值. 在(1)的两端左乘T Q ,右乘Q 有E PQ A P Q E Q AP P Q ==))(()(T T T T 即这说明)()(T T PQ A P Q 与互逆,也就是说1T T )()(-=PQ A P Q将上式代入(3),说明矩阵B 与对角阵D 相似,故它们的特征值相等;由条件知B 的特征值全大于零,因此对角阵D 的特征值也全大于零. 由(2)知AB 与D 合同,因此AB 的特征值全大于零.33.设,A B 为n 阶实正定阵,证明:存在可逆阵P ,使T =P AP E 且T 12diag(,,,)n λλλ=P BP ,其中120n λλλ≥≥≥>为||0λ-=A B 的n 个实根.证:因A 正定,故存在可逆矩阵1P ,使T 11=P AP E因B 正定,故存在可逆矩阵2P ,使T 22=B P P于是T T T T 1112212121()()==P BP P P P P P P P P易见T 11P BP 为正定矩阵,不妨设它的特征值为120n λλλ≥≥≥>.则 T T T 11111||||λλ-=-E P BP P AP P BP T 11||||||λ=-P A B P 故 T 11||0||0λλ-=⇔-=E P BP A B 即 120n λλλ≥≥≥>为||0λ-=A B 的几个实根. 由 T 11P BP 为正定阵,知其为实对称矩阵,所以存在正交矩阵Q ,使T T 1112()diag(,,,)n λλλ=Q P BP Q令 1=P PQ ,则 T T 12,diag(,,,)n λλλ==P AP E P BP34.设A 为n 阶实正定阵,B 为n 阶实半正定阵,则||||+≥A B A . 证:因为A 是n 阶正定矩阵,所以存在n 阶可逆矩阵C ,使得T =C AC E .因为B 是n 阶半正定阵,则T C BC 仍是实对称半正定阵,故存在正交阵Q ,使得1T T T 1()()diag(,,,,)i n D -===Q C BC Q Q C BC Q λλλ其中 0,1,,i i n λ≥=为T C BC 的特征值,且有T T ()=Q C AC Q E令=P CQ ,则P 为可逆矩阵,于是T T ,==P AP E P BP DT T T ()+=+=+P A B P P AP P BP E D上式两端取行列式,得T1||||||||(1)1ni i λ=+=+=+≥∏P A B P E D ||||||T =P A P因 T ||||0=>P P , 故 ||||+≥A B A .35.设,A B 均为实正定阵,证明:方程||0λ-=A B 的根全大于0. 证:由33题知T 11||0||0λλ-=⇔-=E P BP A B . 其中T 11P BP 为正交矩阵,它的特征值0i λ>,1,,i n =,故||0λ-=A B 的根全大于0.36.设A 为n 阶正定矩阵,试证:存在正定矩阵B ,使2B A =. 证:因为A 是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P ,使12-1T n λλλ⎛⎫ ⎪===⎪ ⎪ ⎪⎝⎭P AP P AP D 其中n λλλ,,,21 为A 的n 个特征值,它们全大于零.令),,,2,1(n i i i ==λδ 则21111222222n n n n δλδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 B =12Tn δδδ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭P P显然B 为正定矩阵,且2B A =.37.设A 为n 阶可逆实方阵,证明:A 可表示为一个正定阵与一正交阵的乘积.证:因为A 是n 阶可逆实方阵,故T A A 是正定矩阵,所以存在n 阶正定矩阵B ,使T 2=A A B .于是有1T 11T T 11T 21()()()()------===AB AB B A AB B B B E这说明1-AB 是正交阵. 令 1-=AB Q则 =A QB ,其中Q 是正交矩阵,B 是正定矩阵.38.A 、B 为n 阶正定矩阵,则AB 也为n 阶正定矩阵的充分必要条件是:AB =BA ,即A 与B 可交换.证:方法一 先证必要性.由于A 、B 、AB 都是正定矩阵,所以知它们都是对称矩阵,因此有AB AB B B A A ===T T T )(,,于是BA A B AB AB ===T T T )(即A 与B 可交换.再证充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.因为,A B 是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P 、Q ,使Q Q B P P A T T ,==于是Q PQ P AB T T =上式左乘Q ,右乘1-Q 得)()()(T T T T T 1PQ PQ PQ QP Q AB Q ==-这说明AB 与对称矩阵)()(T T T PQ PQ 相似;因为P T Q 是可逆矩阵,故矩阵)()(T T T PQ PQ 是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零.综合上述知AB 正定. 方法二必要性同方法一,以下证明充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.由于A 正定,所以存在可逆矩阵Q ,使A=Q T Q于是T T T T 1()λλλ--=-=-E AB E Q QB E Q QBQ QT T 1T T T 1T T T 1T()()()()λλλ---=-=-=-Q E Q Q QBQ Q Q E QBQ Q E QBQT 00λλ-=⇔-=E AB E QBQ这说明AB 与T QBQ 有相同的特征值.因为B 是正定矩阵,易见T QBQ 也是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零. 综合上述知AB 正定.39.设A 、B 为实对称矩阵,且A 为正定矩阵,证明:AB 的特征值全是实数.证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T =, 于是有T T T T 1TTT 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ即T ||0||0λλ-=⇔-=E AB E QBQ .因为B 是实对称矩阵,所以T QBQ 也是实对称矩阵,因此它的特征值都是实数,故AB 的特征值也都是实数.40.设A 是正定矩阵,B 是实反对称矩阵,则AB 的特征值的实部为零.证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T =T T T T 1TTT 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ因为B 是实反对称矩阵,所以T QBQ 也是实反对称矩阵,因此它的特征值实部为零,故AB 的特征值实部也为零.41.设A 是正定矩阵,B 是半正定的实对称矩阵,则AB 的特征值是非负的实数.证:由于A 是正定的,所以1-A 也是正定的,于是存在可逆矩阵P ,使得P P A T 1=-,因此1T T T 11T T 111T 11T 111T 1()()()()()λλλλλλλλ-------------=-=-=-=-=-=-=-E AB A A B A P P B A P E P BP PA P P E P BP A A E P BP E P BP E P BP即0)(01T 1=-⇔=---BP P E AB E λλ.由于B 是半正定的实对称矩阵,故1T 1)(--BP P 是半正定的实对称矩阵,因此0)(1T 1=---BP P E λ的根是非负实数.于是0=-AB E λ的根也是非负实数,即AB 的特征值是非负的实数.42.求证实二次型∑∑==++=nr ns s r n x x s r krs x x f 111)(),,( 的秩和符号差与k 无关.证:二次型的矩阵为22334(1)2344652(2)3465963(3)(1)2(2)3(3)22k k k nk n k k k nk n k k k nk n nk n nk n nk n n k n +++++⎛⎫ ⎪+++++ ⎪+++++= ⎪⎪⎪+++++++⎝⎭A对矩阵A 作合同变换,即把A 的第1行的(-2),(-3),…,(-n )倍加到第2,3,…,n 行上;同时把A 的第1列的(-2),(-3),…,(-n )倍加到第2,3,…,n 列上,得到与矩阵A 合同的矩阵B 为212(1)10002000(1)000k n n +----⎛⎫ ⎪- ⎪=- ⎪⎪⎪--⎝⎭B对矩阵B 作合同变换,即把B 的第2行的)1(,2,22---+n k 倍依次加到第1,3,4,…,n 行上;同时把B 的第2列的)1(,2,22---+n k 倍依次加到第1,3,4,…,n 列上,得到与矩阵B 合同的矩阵C 为0100100000000000-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭C 由合同变换的传递性,故A 与C 合同,于是原二次型可经可逆线性变换化简成2112),,(y y x x f n -=再作可逆线性变换 ⎪⎩⎪⎨⎧==-=+=),,3(212211n i zy z z y z z y i i于是二次型f 化成规范形2221122),,(z z x x f n +-=显然二次型),,(1n x x f 的秩为2,符号差为0,它们的值均与k无关.43.设二次型∑∑+-≠+-=+=ni n i i n ini i xx bx a f 1112,其中a 、b 为实数,问a 、b 满足什么条件时,二次型f 正定.证:二次型 f 的矩阵A 的各阶顺序主子式的值与它的阶数n 的奇偶性有关:(1)当n =2m +1时,二次型f 的矩阵为a b a ba ba b a ⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭A 它的各阶顺序主子式为m m m m b a a b a a b a a a a )(,,)(),(,,,222221221----+(2)当n =2m 时,二次型f 的矩阵为ab a b b ab a ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A。

相关主题