辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
【答案】:见解析【解析】:分析金属杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F -mg sin θ-F 安-f =ma又F 安=BIL ,I =ER +R =BLv R +R ,所以F 安=BIL =B 2L 2v R +Rf =μN =μmg cos θ 故F -mg sin θ-B 2L 2vR +R-μmg cos θ=ma当速度v =0时,杆的加速度最大,最大加速度a m =Fm -g sin θ-μg cos θ,方向沿导轨平面向上当杆的加速度a =0时,速度最大,v m =222)cos sin (L B Rmg mg F ⋅--θμθ。
类型二:单杆+电容器(或电源)+导轨模型类【初建模型】【例题2】(2017·模拟)如图所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面,相距为L 。
一质量为m 的导体棒cd 垂直于MN 、PQ 放在轨道而上,与轨道接触良好。
轨道和导体棒的电阻均不计。
(1)如图1所示,若轨道左端M 、P 间接一阻值为R 的电阻,导体棒在拉力F 的作用下以速度v 沿轨道做匀速运动。
请通过公式推导证明:在任意一段时间Δt ,拉力F 所做的功与电路获得的电能相等。
(2)如图2所示,若轨道左端接一电动势为E、阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m,求此时电源的输出功率。
(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。
电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。
求导体棒运动过程中受到的水平拉力大小。
【思路点拨】:(1)导体棒匀速运动→受力平衡→求出拉力做的功。
导体棒切割磁感线产生感应电动势→产生感应电流→求出回路的电能。
(2)闭合开关S→导体棒变加速运动→产生的感应电动势不断增大→达到电源的路端电压→棒中没有电流→由此可求出电源与电阻所在回路的电流→电源的输出功率。
(3)导体棒在外力作用下运动→回路中形成充电电流→导体棒还受安培力的作用→由牛顿第二定律列式分析。
【答案】:见解析【解析】:(1)导体棒切割磁感线,E=BLv导体棒做匀速运动,F=F安,又F安=BIL,其中I=ER在任意一段时间Δt,拉力F所做的功W=FvΔt=F安vΔt=B2L2v2 RΔt电路获得的电能ΔE=qE=EIΔt=B2L2v2 RΔt可见,在任意一段时间Δt,拉力F所做的功与电路获得的电能相等。
(2)导体棒达到最大速度v m时,棒中没有电流,电源的路端电压U=BLv m电源与电阻所在回路的电流I=E-U r电源的输出功率P=UI=EBLv m-B2L2v m2r。
(3)感应电动势与电容器两极板间的电势差相等BLv=U由电容器的U-t图可知U=U1 t1 t导体棒的速度随时间变化的关系为v=U1 BLt1t可知导体棒做匀加速直线运动,其加速度a=U1 BLt1由C=QU和I=Qt,得I=CUt=CU1t1由牛顿第二定律有F-BIL=ma可得F=BLCU1t1+mU1BLt1。
【化模型】单杆+电容器(或电源)+导轨模型四种题型剖析【变式】:例题2第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为μ,写出导体棒的速度大小随时间变化的关系式。
【答案】:v=F-μmgm+CB2L2t【解析】:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为:E=BLv电容器所带电荷量为:Q=CE=CBLv再经过很短一段时间Δt,电容器两端电压的增量和电荷量的增量分别为ΔU=ΔE=BLΔv ΔQ=CΔU=CBLΔv流过导体棒的电流:I=ΔQΔt=CBLΔvΔt=CBLa导体棒受到的安培力:f1=BIL=CB2L2a 导体棒所受到的摩擦力:f2=μmg由牛顿第二定律得:F-f1-f2=ma联立以上各式解得:a=F-μmg m+CB2L2显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为:v=F-μmgm+CB2L2t。
类型三:双杆+导轨模型类【初建模型】【例题3】(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。
(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab和cd,构成矩形回路。
在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd的初速度。
若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。
【思路点拨】:(1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断。
(2)导体棒ab运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况,即可得出结论。
【答案】:见解析【解析】:(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别由牛顿第二定律得:F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大。
(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流。
ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速。
两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动。
【化模型】三大观点透彻解读双杆模型示意图力学观点图像观点能量观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动棒1动能的减少量=棒2动能的增加量+焦耳热两棒以相同的加速度做匀加速直线运动外力做的功=棒1的动能+棒2的动能+焦耳热【变式】:若例题3(1)中甲、乙两金属杆受恒力作用情况如图所示,两杆分别在方向相反的恒力作用下运动(两杆不会相撞),试分析这种情况下甲、乙金属杆的收尾运动情况。
【答案】:见解析【解析】:设某时刻甲和乙的速度分别为v1和v2,加速度分别为a1和a2,甲、乙受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别应用牛顿第二定律得:F1-BIl=ma1,BIl-F2=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得:a1=a2=F1-F22m⑤可见甲、乙两金属杆最终做加速度相同的匀加速运动,速度一直增大。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧训练题1.如图所示,一对光滑的平行金属导轨固定在同一水平面,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻。
一质量m=0.1kg、电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T。
棒在水平向右的外力作用下由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。
导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。
求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F。
2.(2017·检测)如图所示,水平面有两根足够长的平行导轨L1、L2,其间距d=0.5m,左端接有容量C=2000μF的电容。
质量m=20g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。