高等数学知识在生物化学工程中的应用举例高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。
下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。
例1 在化工原理中常用的柏努利方程式中的应用化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。
流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。
定态流动时液体的机械能衡量式为∑⎰-=+∆+∆f e p p h W vdp u z g 2122(1) 该式队可压缩液体和不可压缩液体均适用。
对不可压缩液体,(1)式中⎰2p pvdp项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρρρpp p dp vdp p pp p ∆=-==⎰⎰21221,代入(1)式有:∑-=∆+∆+∆f e h W pu z g ρ22或 ∑+++=+++f e h p u gz W p u gz ρρ2222121122 (2) (2)式称为柏努利方程式。
需要注明的是,22u 为动能,gz 为位能,ρp为静态能,e W 为有效能,∑fh 为能量损耗,z ∆为高度差。
例2 混合气体粘度的计算常温下混合气体的计算式为∑∑===ni ii ni iiim My My 121121μμ (3)其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。
例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度?解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率,Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为s Pa Ars Pa N s Pa O ⋅⨯⋅⨯⋅⨯---552521009.2107.11003.2代入(3)式计算空气的粘度,即sPa My My ni ii ni iiim ⋅⨯=⨯+⨯+⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯==----==∑∑52121212152152151211211078.19.3901.02878.03221.09.391009.201.028107.178.0321003.221.0μμ例3. 在细胞生长计算中的应用随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。
如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。
设限制性基质为A ,其浓度为a ,且A 的消耗速度与细胞浓度成正比:X K dtdaa =-(4) (4)式中a K 为常数,假定接种后培养液中细胞浓度为0X ,且立即进入指数生长阶段,且一直保持到静止期,则)ex p(0t X X m m μ= (5)其中m X 为分批培养达到的最大细胞浓度,即A 完全耗尽时细胞浓度,由(3)式和(4)式可得)(00X X K a m ma-=μ 整理得 00a K X X mam μ+=也就是说分批培养过程中获得的最大细胞浓度与限制性基质的厨师浓度存在着线性关系。
如果细胞及生长速度的下降是由于有害物质的积累,可以认为KX dtdX=[1-f(有害物质浓度)] 为方便起见,假定细胞生长速率与有害物质浓度有线性关系)1(t bC KX dtdX-= (5) 其中k, b 为常数,t C 为有害物质浓度。
由于有害物质有细胞产生,可以认为qX dtdC t= t=0时,t C =0 (6) 式中q 为常数,由(6)式可得⎰=tt qXdt C 0,代入(5)式有:⎰-=t qXdt b KX dtdX01(因此有效生长速度为)1(10⎰-=⋅=t Xdt bq K dtdXX μ随着时间急剧下降,当⎰=t Xdt bq 01时,细胞的生长停止。
例4 细胞团内的氧传递细胞集成团时,氧在细胞团中边扩散边备细胞消耗,为方便起见,把细胞团看作一个均匀的耗氧球体,设它的半径为R ,密度为ρ,取其半径为r ,厚度为dr 的一层球壳进行稳态时的物料衡量dr r Q r drdC D r dr dC Do dr r r 2224|)4(|)4(2πρππ⋅=⋅--⋅-+ 其中D 为氧在细胞内的扩散系数,C 为半径r 处的氧浓度,将上式整理,可得到ρ2222)||(o r dr r Q r drdr dCr dr dC r D =-+当0→dr 时,ρ222)(o Q r drdC r dr d D= 因此ρ2)2(22o Q dr dCr drC dD =+(7) 细胞的比耗氧速率与耗氧浓度的关系适用米氏方程CK C Q Q m m o o +=)(22式中m o Q )(2为最大耗氧速率,m K 为米氏常数,代入(7)式中,有ρC K C Q dr dCr drC dD m m o +=+)()2(222 (8)边界条件为 r=R 时,L C C = R=0时,0=drdC取Lm L C K R rX C C y ===β,,代入(8)式,有yaydx dy x dx y d +=⋅+β222 (9) 其中mo L Q DC R a )(662ρ=。
边界条件则改为 x=1时,y=1 x=0时,1=dxdy。
设细胞团的表现比耗氧速率为Q ,dr CK CQ r dr r Q R m m o R +⋅-+=⎰)(])[(343420333ρπρπ,整理得 ⎰+=1023)(2dx y y x Q Qmo β,(9)式可写作 yy ax dx dy x dx d +=β22)(, 因此有1102|3)(3)(2===x m o dxdya dx dy x a Q Q 若取细胞团表面的比耗氧速率1)()(22'+=+=βm o L m Lm o Q C K C Q Q 作为比较,则细胞元的耗氧有效因子为1'|)1(3=+==x dx dya QQ βη,a 则反映了细胞团中最大反应速率与最大传输速率之比,反应速率越大,传递速率越小,细胞团内部缺氧就越重,有效因子也就越低。
例5 在中心导体模型中的应用长柱状细胞,如神经轴突和肌纤维细胞,其长度尺寸远大于细胞直径,电流横跨细胞膜的电阻往往比朱庄方向流经一段细胞内介质所代表的中心电阻高出很多,从而细胞流内流动的电流在溢出膜以前在柱轴方向内部导体中流过相当长距离,这种中心导体概念成为用电缆理论分析长纤维状细胞中电流、电位分布的基础。
若设m r 为单位长膜电阻,m C 为单位长膜电容,e i r r ,分别为胞内、外液单位长介质电阻。
令胞内、外电位分别为e i V V ,,于是膜两侧电位差e i m V V V -=。
经推导可得:tV C r V x V r r r mmm m m e i m ∂∂+=∂∂⋅+22 令 m m m ei mC r r r r =+=τλ,2 则得到标准的电缆方程形式:t V V xV mm m m ∂∂+=∂∂τλ222若细胞膜处于电绝缘状态,单位长度膜面积上的电流0=m i ,即22x V m∂∂=0,上式成为一阶常微分方程:0=+dtdV V mmm τ 解得:m t m e V V τ/0-=,其中0V 为t=0时的m V 值。
显然时间常数m τ表征均匀膜电位差的自然衰减性质。
对非均匀性质莫而言,m V 的被动衰减较为复杂,m τ仅是一个主要衰减因子。
当输入为直流稳态电压时,上式简化为m mV dx V d =222λ。
如果在x=0处维持0V V m =,其余地方均不加任何电压,即∞→x 处m V 为有限值,则方程的解为λ/0x m e V V -=。
λ描述了中心导体中电压稳态分布将随距离而自然衰减。
对于-∞=x 到+∞=x 的双无限长电缆,x=0处维持0V V m =稳定值要求外加电流加倍。
无限与半无限长电缆上的稳态分布,为实验确定细胞参数提供了依据。
例6 在动力学猝灭与静态猝死中的应用激发态分子或荧光团由于加入像I 与2O 等猝死剂,彼此发生碰撞而造成荧光的猝死,又叫做动力学猝死或动态猝灭。
这种猝死服从Stern-V olmer 方程。
此方程从荧光量子效率或从激发衰变率都可导出。
若r 为衰变率,则其与有猝灭剂时的总衰变率的比值即][0Q K r r F F q += 或者写成][1][100Q K Q K FF d q +=+=τ (10) 式中F F ,0分别为没有和有猝死时的荧光,[Q]为猝灭剂的浓度,q K 为双分子猝死常数,0τ是荧光团在无猝灭剂时的荧光寿命,d K 就是Stern-V olmer 猝灭常数,这说明荧光团的寿命愈长,它与猝灭剂碰撞的几率。
此几率则决定于它们的扩散速率、分子大小与浓度等:310/4aAD K q π=D 为荧光团与猝灭剂扩散系数之和,a 为分子半径之和,A 为亚氏常数,测定q K 可以给出扩散系数的情况。
测定q K 最好用荧光寿命而不用荧光强度,因为后者可能被其他因素干扰,其中一种就是下面要叙述的静态猝灭。
碰撞猝灭可使激发态去布局(depopulation),若激发态在有和无猝灭剂时的寿命分别为0ττ和,则110])[(--+==Q K r r q ττ因此, ][1/00Q K q τττ+= (11) 此式与(10)式相似。
它说明动态猝死的一个重要特性,即荧光强度的降低与荧光寿命的减少是等价的。
因为F F /0的测定较方便,通常还是常用此参量。
又因为F F /0的猝灭剂浓度呈线性关系,所以F F /0对[Q]左图可得到一条直线,其斜率就等于d K 或0τq K ,从而可得到猝灭常数的数值。
Stern-V olmer 的线性关系只适用于溶液中只有一类荧光团的情况,并且它们对猝灭剂易感性是相同的。
若细筒中含有两类荧光团,并且其中只有一类对猝灭剂易感,则用Stern-V olmer 方程得到的是像X 轴弯曲的曲线。
静态猝死是荧光团与猝灭剂在基态时就形成的不发荧光的络合物,当此络合物种荧光团吸收光能激发时,即刻回到基态而不发光,所以此时荧光强度与猝灭剂浓度的关系可从络合物形成时的络合常数(q K )推导出来。