当前位置:文档之家› 大学物理静电场经典习题详解.doc

大学物理静电场经典习题详解.doc

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。

求它们之间的斥力。

题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。

题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。

证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。

题7.2分析:根据题意将电子作为经典粒子处理。

电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。

点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε=由此出发命题可证。

证:由上述分析可得电子的动能为re mv E 202k 8121πε== 电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。

为方便计算可以利用晶格的对称性求氯离子所受的合力。

解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。

题7.4:若电荷Q 均匀地分布在长为L 的细棒上。

求证:(1)在棒的延长线,且离棒中心为r 处的电场强度为22041L r QE -=πε (2)在棒的垂直平分线上,离棒为r 处的电场强度为220421L r r QE +=πε 若棒为无限长(即∞→L ),试将结果与无限长均匀带电直线的电场强度相比较。

题7.4分析:这是计算连续分布电荷的电场强度。

此时棒的长度不能忽略,因而不能将棒当作点电荷处理。

但带电细棒上的电荷可看作均匀分布在一维的长直线上。

如图所示,在长直线上任意取一线元,其电荷为d q = Q d x /L ,它在点P 的电场强度为r r qe E 20d 41d '=πε整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分。

(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=Li E E d(2) 若点P 在棒的垂直平分线上,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ⎰⎰==LLj j E E E d sin d y α证:(1)延长线上一点P 的电场强度⎰'=L r qE 24d πε,利用几何关系x r r -='统一积分变量,则2200222-041212141)(d 41L r QL r L r L x r L x Q E L L P -=⎥⎦⎤⎢⎣⎡+--=-=⎰πεπεπε 电场强度的方向沿x 轴。

(3) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 ⎰'=L r qE 24d sin πεα利用几何关系22,sin x r r r r +=''=α统一积分变量,则 220232222-0412)(d 41rL r Qr x L x rQ E L L +=+=⎰πεπε当棒长∞→L 时,若棒单位长度所带电荷为λ常量,则P 点电场强度rL r LQ r E L 022024121limπελπε=+=∞→此结果与无限长带电直线周围的电场强度分布相同。

这说明只要满足122<<L r ,带电长直细棒可视为无限长带电直线。

题7.5:一半径为R 的半圆细环上均匀分布电荷Q ,求环心处的电场强度题7.5分析:在求环心处的电场强度时,不能将带电半圆环视作点电荷。

现将其抽象为带电半圆弧线。

在弧线上取线元d l ,其电荷此电荷元可视为点电荷l RQq d d π=,它在点O 的电场强度r 20d 41d e E r qπε=。

因圆环上电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有⎰=LE 0d x ,点O 的合电场强度j E ⎰=LE y d ,统一积分变量可求得E 。

解:由上述分析,点O 的电场强度l R QR E L d sin 4120O πθπε⋅⋅-=⎰由几何关系θd d R l =,统一积分变量后,有 20200O 2d sin 41R Q E επθθπεπ-=-=⎰ 方向沿y 轴负方向。

题7.6:用电场强度叠加原理求证:无限大均匀带电板外一点的电场强度大小为02εσ=E (提示:把无限大带电平板分解成一个个圆环或一条条细长线,然后进行积分叠加) 题7.6分析:求点P 的电场强度可采用两种方法处理,将无限大平板分别视为由无数同心的细圆环或无数平行细长线元组成,它们的电荷分别为y r r q d d d 2d σλπσ==或 求出它们在轴线上一点P 的电场强度d E 后,再叠加积分,即可求得点P 的电场强度了。

证1:如图所示,在带电板上取同心细圆环为微元,由于带电平面上同心圆环在点P 激发的电场强度d E 的方向均相同,因而P 处的电场强度i i i E E 023220232202)(4d 2)(d 41d εσπεπσπε=+⋅=+==⎰⎰⎰x r rxr x r q x电场强度E 的方向为带电平板外法线方向。

证2:如图所示,取无限长带电细线为微元,各微元在点P 激发的电场强度d E 在Oxy 平面内且对x 轴对称,因此,电场在y 轴和z 轴方向上的分量之和,即E y 、E z 均为零,则点P 的电场强度应为i ii E 220x d 2cos d x y y x E E +===⎰⎰∞∞-πεσα 积分得i E 02εσ=电场强度E 的方向为带电平板外法线方向。

上述讨论表明,虽然微元割取的方法不同,但结果是相同的。

题7.7:水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示。

假设氧原子和氢原子等效电荷中心间距为r 0。

试计算在分子的对称轴线上,距分子较远处的电场强度。

题7.7分析:水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er p =,而夹角为θ2。

叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线。

由于点O 到场点A 的距离x >>r 0,利用教材中电偶极子在延长线上的电场强度30241x pE πε=可求得电场的分布。

也可由点电荷的电场强度叠加,求电场分布。

解1:水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos 1cos 44142x er x er x p E θπεθπεπε=== 解2:在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020424cos 2cos 2x er e E E E πεπεββ-=-=-+ 由于θcos 202022xr r x r -+=rr x θβcos cos 0-=代入得⎥⎦⎤⎢⎣⎡--+-=2230202001)cos 2(cos 42x xr r x r x e E θθπε测量分子的电场时,总有x >>r 0,因此, 式中30202)cos 2(θxr r x -+2303cos 21⎪⎭⎫⎝⎛-≈x r x θ⎪⎭⎫⎝⎛⋅-≈x r x θcos 223103,将上式化简并略去微小量后,得300cos 1x e r E θπε=题7.8:无两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ。

(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x );(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。

题7.8分析:(1)在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加。

(2)由F = qE ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度来乘以单位长度导线所带电的量,即:F = λE 应该注意:式中的电场强度E 是除去自身电荷外其它电荷的合电场强度,电荷自身建立的电场不会对自身电荷产生作用力。

题7.8解:(1)设点P 在导线构成的平面上,+E 、-E 分别表示正、负带电导线在P 点的电场强度,则有iiE E E -)(211200000x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+πελπελ(2)设+F 、-F 分别表示正、负带电导线单位长度所受的电场力,则有i F F 0022r πελλ==-+i F F 0022r πελλ-=-=+-显然有-+-=F F ,相互作用力大小相等,方向相反,两导线相互吸引。

题7.9:如图所示,电荷Q ±分别均匀分布在两个半径为R 的半细圆环上。

求:(1)带电圆环偶极矩的大小和方向;(2)等效正、负电荷中心的位置。

题7.9分析:(1)电荷分布呈轴对称,将细环分割成长度均为d s 的线元,带正电荷的上半圆环线元与带负电荷的下半圆环对称位置上的线元构成一元电偶极子,细圆环总的偶极矩等于各元电偶极矩之和,有⎰=j p p d(2)由于正、负电荷分别对称分布在y 轴两侧,我们设想在y 轴上能找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电荷中心。

等效正负电荷中心一定在y 轴上并对中心O 对称。

由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。

解:(1)将圆环沿y 轴方向分割为一组相互平行的元电偶极子,每一元电偶极子带电θππd d d Qs R Q q ±=±=± j j p θθπθd cos 2d cos 2d R Qq R =⋅=则带电圆环的电偶极矩j p p R Qπππ4d 2==⎰-(2)等效正、负电荷中心间距为 πRQ p l 4==根据对称性正、负电荷中心在y 轴上,所以其坐标分别为⎪⎭⎫ ⎝⎛πR 2,0和⎪⎭⎫ ⎝⎛-πR 2,0。

相关主题