当前位置:文档之家› (完整版)微专题-圆锥曲线中的最值问题(解析版)

(完整版)微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。

圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||2PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅u u u r u u u r的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 02x 2-),B (x 020x 2-,OA OB ⋅u u u r u u u r=2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--•--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅u u u r u u u r=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅u u u r u u u r的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x 2),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥,当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x 2)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。

作PQ ⊥右准线于点Q , 则由椭圆的第二定义||4||5PA e PQ ==, ∴5||||||||4PA PB PQ PB +=+, 显然点P 应是过B 向右准线作垂线与椭圆的交点,最小值为174。

(2)由椭圆的第一定义,设C 为椭圆的左焦点,则||2||PA a PC =-∴||||||2||10(||||)PA PB PA a PC PB PC +==-=+-,根据三角形中两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。

当P 到P"位置时,||||||PB PC BC -=,||||PA PB +有最大值,最大值为10||10210BC +=+当P 到'P 位置时,||||||PB PC BC -=-,||||PA PB +有最小值,最小值为10||1010BC -=-(数形结合思想、椭圆定义、最值问题的结合)变式: 点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|PA|+|PF| 取得最小值,求点P 的坐标。

解:抛物线y 2=4x 的准线方程为x=-1,设P 到准线的距离为d ,则|PA|+|PF|=|PA |+d 。

要使|PA|+|PF|取得最小值,由图3可知过A 点的直线与准线垂直时,|PA|+|PF|取得最小值,把y=2代入y 2=4x ,得P (1,2)。

例2: 已知椭圆的中心在O,右焦点为F ,右准线为L ,若在L 上存在点M ,使线段OM 的垂直平分线经过点F ,求椭圆的离心率e 的取值范围?解:如果注意到形助数的特点,借助平面几何知识的最值构建使问题简单化,由于线段OM 的垂直平分线经过点F ,则,c OF MF ==利用平面几何折线段大于或等于直线段(中心到准线之间的距离),则有 2c ≥ca 2e ∴≥22,AP F O d X=1x y∴椭圆的离心率e 的取值范围椭圆的离心率e 的取值范围为⎪⎪⎭⎫⎢⎣⎡1,22 变式1: 已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值? 解:双曲线的离心率e 的最大值为53变式2: 已知椭圆方程为 12222=+by a x ,(b a <<0)的左、右焦点分别为F 1、F 2,点P 在为椭圆上的任意一点,且|PF 1|=4|PF 2|,求此椭圆的离心率e 的最小值? 解:椭圆的离心率e 的最小值为53例3: 已知P 点在圆x 2+(y -2)2=1上移动,Q 点在椭圆2219x y +=上移动,试求|PQ|的最大值。

解:故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ |的最大值,只要求|O 1Q |的最大值.设Q (x ,y ),则|O 1Q |2= x 2+(y -4)2①因Q 在椭圆上,则x 2=9(1-y 2) ②将②代入①得|O 1Q |2= 9(1-y 2)+(y -4)2218272y ⎛⎫=-++ ⎪⎝⎭因为Q 在椭圆上移动,所以-1≤y ≤1,故当12y =时,1maxOQ =此时max 1PQ =【点晴】1.与圆有关的最值问题往往与圆心有关;2.函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不能被忽视.......................。

变式1: 设P 是椭圆22x a+2y = 1 ( a > 1 ) 短轴的一个端点, Q 为椭圆上的一个动点,求| PQ | 的最大值.解法1: 依题意可设 P (0, 1 ), Q (x , y ), 则| PQ 又因为Q 在椭圆上, 所以 2x = 2a (12y -) .2||PQ = 2a (12y -) + 2y -2y + 1= (12a -)2y -2y + 1 + 2a= (12a -) 221()1y a --211a -- + 1 + 2a . 因为 | y | ≤ 1, a > 1,若a 2, 则211a -≤1, 当y = 211a -时, | PQ | 取最大值2211a a a --;若1< a 2, 则当y = -1时, | PQ | 取最大值2 . 解法2:设P (0, 1 ), Q (cos a θ, sin θ), 则 2||PQ = 2a 2cos θ + 2(sin 1)θ- = (12a -)2sin θ-2sin θ+2a + 1 = (12a -)221(sin )1a θ---211a -+2a + 1. 注意到 |sin θ| ≤ 1, a > 1. 以下的讨论与解法1相同.变式2:已知△OFQ 的面积为6OF FQ m ⋅=u u u r u u u r(1646m ≤≤,求∠OFQ 正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26||,1)OF c m c ==-u u u r 当 ||OQ uuu r 取得最小值时,求此双曲线的方程。

解析:(1)设∠OFQ =θ||||cos()1||||sin 262OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩u u u r u u u ru u u r u u u r 46tan θ⇒= 646m ≤≤ Q 4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b -= >> =-u u u r 则 ∴11||||262OFQ S OF y ∆=⋅=u u ur 146y =又∵OF FQ m ⋅=u u u r u u u r ,∴21116(,0)(,)()(1OF FQ c x c y x c c c ⋅=⋅-=-⋅= )u u u r u u u r 22211126963,||12.8c x OQ x y c ∴= ∴=+=+≥u u u r当且仅当c=4时,||OQ uuu r最小,此时Q 的坐标是6,6)或6,6)22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= 【精要归纳】圆锥曲线的最值问题,常用以下方法解决:(1)当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;(2)范围实质为一个不等式关系,如何构建这种不等关系?例2中可以利用方程和垂直平分线性质构建。

相关主题