当前位置:文档之家› 5_2、陀螺罗经

5_2、陀螺罗经

My=2R2Sgsin
≈2R2Sg·
=M·
M=2RSg为最大控制力矩。
液体连通器产生的控制力矩的大小与罗经结构参数和陀螺仪主轴高度角有关。
控制力矩M沿oy轴的方向将随角的方向而定,使主轴进动的速度用u2表示,
它使陀螺仪主轴负端自动找北(向子午面进动):
u2=M=M·
斯伯利系列罗经,为液体连通器罗经,重力力矩,机械摆式罗经。
阻尼力矩的产生方式:
液体阻尼器由固定在陀螺球主轴两端的两个相互连通的液体容器组成,内充一定数量的高粘度硅油。连通两个容器的导管很细,使容器内液体流动滞后于主轴俯仰约四
图2-1-28
分之一个自由摆动周期()。当罗经主轴自动找北时,主轴的俯仰使两个容器中的液体数量不相等,多余液体的重力在陀螺球水平轴产生阻尼力矩,属于水平轴阻尼方式。阻尼力矩的大小用下式表示:
M=K·
Ky,罗经电控系数,由罗经结构参数决定,如摆信号放大倍数,力矩器的参数等。
控制力矩的大小,与罗经的结构参数和陀螺球主轴的高度角有关。
罗经的结构参数可以改变,这是此种罗经的一大优点。
控制力矩M沿oy轴的方向将随的方向而定,它使陀螺球主轴正端自动找北(向子午面进动),主轴进动的速度:
2=M
=K•
阻尼设备(damper))(阻尼器):陀螺罗经产生阻尼力矩的设备(器件)。
阻尼方式(damping mode):陀螺罗经将阻尼力矩施加在陀螺仪(球)的哪一轴上
陀螺罗经的阻尼方式:水平轴阻尼方式(damping mode of horizotal axis)和垂直轴阻尼方式(damping dode of vertical axis)。
理想自由摆动周期所对应的纬度称为陀螺罗经的设计纬度(chosen latitude)(0),设计纬度是设计罗经时所选取的一特殊纬度。例如安许茨4型罗经的设计纬度为60°。
4.使陀螺罗经稳定指北
1)使陀螺罗经稳定指北的措施
阻尼力矩(damping moment):为了使陀螺罗经稳定指北而对陀螺仪施加的力矩。
罗经主轴作等幅椭圆运动(自由摆动)一周所需要的时间,称为陀螺罗经的自由摆动周期(period of free-oscillation)T0。
自由摆动周期T0的大小:
T0=2π
式中ωcos为地球自转角速度ω的水平分量。
陀螺罗经的自由摆动周期与罗经的结构参数(H、M)和纬度有关。
T0等于84.4min时,称为陀螺罗经的理想自由摆动周期,这时若船舶机动航行,船上的陀螺罗经将不产生第一类冲击误差。
分解为沿水平方向的分量1和沿垂直方向的分量2:
1=·cos
2=·sin
将自由陀螺仪主轴与子午面的夹角称为主轴的方位角(azimuth)(用表示),主轴与水平面之间的夹角称为主轴的高度角(elevating annealing)(用表示)。
自由陀螺仪主轴相对子午面北纬东偏,南纬西偏;自由陀螺仪主轴相对水平面东升西降,全球一样。
(3)阿玛-勃朗系列罗经获得控制力矩的方式
采用电磁摆(electromagnetic pendulum)和水平力矩器(horizontal momentat device)的间接控制法获得控制力矩。
控制力矩的产生方式:
图2-1-25
阿玛-勃朗系列罗经的控制设备由电磁摆和位于陀螺球水平轴上的力矩器组成。
按照阻尼方式分两大类型:水平轴阻尼陀螺罗经和垂直轴阻尼陀螺罗经。
3.与磁罗经相比较,陀螺罗经的主要优缺点
主要优点:指向精度高;多个复示器,有利于船舶自动化;不受磁干扰影响,指向误差小;安装位置不受限制等。
主要缺点:必须有电源才能工作(可靠性较差);工作原理、结构复杂。
4.发展趋势
体积小型化;广泛采用先进技术;提高指向可靠性和使用寿命;简化维护保养。
比对实验说明
进动性:高速旋转的自由陀螺仪,当受外力矩(moment)(用M表示)作用时,其主轴的动量矩(momentum moment)失端(用H表示)将以捷径趋向外力矩M失端作进动运动,记作H→M。
图2-1-21
进动性的条件:自由陀螺仪转子高速旋转和受外力矩作用;
进动性表现特征:主轴相对空间初始方向产生进动运动。
安许茨系列罗经称为下重式陀螺罗经,控制力矩为重力力矩,属于机械摆式罗经。
(2)斯伯利系列罗经获得控制力矩的方式
在陀螺仪主轴两端,加装液体连通器(liquid communicating vessel)的直接控制法获得控制力矩。
控制力矩的产生的方式:
图2-1-24
液体连通器:斯伯利系列罗经产生控制力矩的设备是在陀螺仪主轴两端加装液体容器,内充一定液体,液体可在两个容器之间流动。
平衡陀螺仪(balanced gyroscope):若陀螺仪的重心(G)与中心(O)重合。
自由陀螺仪:重心(G)与中心(O)重合,不受任何外力矩作用的三自由度平衡陀螺仪。
2)自由陀螺仪的结构
由转子(gyro wheel)、转子轴(spin axis)(主轴)、内环(horizontal ring)、内环轴(horizontal axis)(水平轴)、外环(vertical ring)、外环轴(vertical axis)(垂直轴)、基座组成的。
一、陀螺罗经指北原理
1.自由陀螺仪及其特性
1)自由陀螺仪(free gyroscope)定义
陀螺仪从广义讲就是一种能绕定点高速旋转的对称刚体。
实用陀螺仪是高速旋转的对称刚体及其悬挂装置的总称。
按其悬挂装置不同分为单自由度陀螺仪(single-degree of freedom gyro.)、二自由度陀螺仪(two-degree of freedom gyro.)和三自由度陀螺仪(three-degree of freedom gyro.)。
3)自由陀螺仪的特性
(1)定轴性(gyroscopic intertia)
比对实验说明
定轴性:高速旋转的自由陀螺仪,当不受外力矩作用时,其主轴将保持它在空间的初始方向不变。
定轴性条件:陀螺转子高速旋转;陀螺仪不受外力矩作用。
定轴性表现特征:主轴指向空间初始方向不变。
(2)进动性(gyroscopic precession)
图2-1-22
自由陀螺仪主轴具有指向空间初始方向不变的定轴性,若使自由陀螺仪主轴开始时指向太阳,它将始终指向太阳,我们将自由陀螺仪主轴的这种运动称为自由陀螺仪的视运动。
自由陀螺仪的视运动是其主轴相对地球子午面和水平面的运动。
使自由陀螺仪产生视运动的原因是地球自转。
2)Байду номын сангаас由陀螺仪的视运动规律
地球自转的角速度用表示,
陀螺球具有主轴(ox轴)、水平轴(oy轴)和垂直轴(oz轴)。
陀螺球的重心G不在其中心O,而是沿垂直轴下移几毫米。
t = t时,陀螺球位于A1处,此时主轴水平指东,= 0,重力mg作用线通过陀螺仪中心O,重力mg不产生力矩(虽有力但力臂为零)。
图2-1-23
t = t时,随着地球自转,当,陀螺球位于A2处,此时主轴上升了一个角(≠0),重力mg作用线不通过陀螺球中心O(有力臂a),重力mg的分力mgsin产生沿水平轴oy向的重力控制力矩M:
当陀螺仪工作,t = t1时,陀螺仪位于A1处,此时主轴水平指东,= 0,两个容器中的液体数量相等,液体重力mg作用线通过陀螺仪中心O,重力mg不产生力矩。
随着地球自转,当t = t2时,陀螺仪位于A2处,此时主轴上升了一个角(≠0),低端容器中液体比高端容器中液体多,多余液体的重力mg作用线不通过陀螺仪中心O,力臂不为零,mg的分力mgsin产生沿水平轴oy向的重力控制力矩M:
转子的转动角速度的方向称为陀螺仪主轴的正端。
自由陀螺仪结构特点:有三个自由度,即主轴、水平轴和垂直轴;
整个陀螺仪的重心与中心重合。
陀螺坐标系:右手坐标系,以自由陀螺仪中心(O)为坐标原点o;陀螺仪主轴方向为纵坐标ox;水平轴为横坐标oy;垂直轴为垂直坐标oz。
图2-1-20
1-转子;2--内环;3-外环;4-固定环;5-基座
第二节陀螺罗经
概述
1.发展
法国物理学家列昂.福科(Leon Foucault) 1852年提出的陀螺指向理论;
现代船舶上普遍使用的陀螺罗经于本世纪初研制成功的船舶指向仪器。
1908年德国生产出了安许茨型陀螺罗经(ANSCHTZ gyrocompass);
1911年美国生产出了斯伯利型陀螺罗经(SPERRY gyrocompass);
(2)斯伯利系列罗经获得阻尼力矩的方式
采用在陀螺球(仪)正西侧安放阻尼重物(damping weight)的直接阻尼法产生阻尼力矩。
按力矩的产生方式不同:三大系列罗经的三种主要方式。
(1)安许茨系列罗经获得控制力矩的方式
将陀螺球重心下移的直接控制法获得控制力矩。
控制设备(controlling device):陀螺罗经产生控制力矩的设备(器件)。
陀螺球(gyrosphere):安许茨系列罗经是将双转子陀螺仪固定和密封在金属球内。
自由陀螺仪进动特性口诀:
陀螺仪表定向好,
进动特性最重要,
要问进动何处去?
H向着M跑。
自由陀螺仪主轴进动角速度(的快慢,p)与外力矩M成正比,与动量矩H成反比。
p=
右手定则:伸开右手,掌心对着主轴正端,四指并拢指向加力方向,拇指与四指垂直,则拇指的方向就是主轴正端进动的方向。
2.自由陀螺仪的视运动
1)视运动现象
2)陀螺罗经获得阻尼力矩的方法
按产生阻尼力矩的原理不同,分为直接阻尼法和间接阻尼法;
按阻尼力矩的性质不同,分为重力阻尼力矩和电磁阻尼力矩;
图2-1-27
按三大系列罗经使用的阻尼设备不同,分为以下三种方式:
(1)安许茨系列罗经获得阻尼力矩的方式
采用液体阻尼器(liquid damping vessel)的直接阻尼法产生阻尼力矩的。
相关主题