当前位置:
文档之家› 第5章 杆件的应力与强度计算
第5章 杆件的应力与强度计算
FBy
FAy FBy 42kN
轴向拉伸和压缩 q =4.2kN/m FCy FCx (2)求拉杆的轴力。
用截面法取左半个屋架为 研究对象,列平衡方程
ΣMC =0
l l FAy 4.2 q FNAB 1.4 0 2 4
FN
钢拉杆
FAy
(3)设计拉杆的截面。
FNAB 63kN
A 393.8 A1 mm 2 196.9mm 2 2 2
选用两根36×3的3.6号等边角钢。
轴向拉伸和压缩
36×3的3.6号等边角钢的横截面面积 A1=210.9mm2 故此时拉杆的面积为 A=2×210.9mm2=421.8mm2>393.8mm2 能满足强度要求,同时又比较经济。
对于等截面直杆,最大正应力一定发生在轴力最大的截 面上。
max
FN max A
习惯上把杆件在荷载作用下产生的应力,称为工作应 力。 通常把产生最大工作应力的截面称为危险截面,产生 最大工作应力的点称为危险点。
对于产生轴向拉(压)变形的等直杆,轴力最大的截
面就是危险截面,该截面上任一点都是危险点。
τ
max
σ/2
450 450
max 45
0 0
2
sin
2
τ
min
min 45
σ
= 0
2
σ/2
当α =900 时 说明緃向无正应力
轴向拉伸和压缩
三、强度计算
任何一种材料都存在一个能承受应力的上限,这个上 限称为极限应力,常用符号σo表示。
极限应力
d M
1
2
M
r
1
2
O1 a1
O2 b1
弯曲应力
距中性层为y处的纵向纤维ab的变形 原
长: ab O1O2 rd dx 1
o1 a
d 2
o2
b O1
1
r
变形后长: a1b1 (r y)d
式中ρ 为中性层上的纤维的曲率半径。
1
则纤维的应变为
2a
O2 b1
ab a O O ab b
max
FNAB [ ] A
轴向拉伸和压缩
FNAB 63 103 A mm 2 393.8mm 2 [ ] 160
当拉杆为实心圆截面时
d
A
d2
4
393.8mm 2
4 393.8 mm 22.39mm 3.14
取d=23mm。
当拉杆用角钢时,查型钢表。每根角型的最小面积应为
;σcmax及[σc] 分别为最大工作压应力和许用压应力。
轴向拉伸和压缩
⒉ 强度条件在工程中的应用
根据强度条件,可以解决三类强度计算问题 1、强度校核: 2、设计截面:
FN max A FN A
3、确定许可载荷:
FN A
轴向拉伸和压缩
例 正方形截面阶梯形砖柱。已知:材料的许用压应力 [σC]=1.05MPa,弹性模量E=3GPa,荷载FP=60kN,试校核 该柱的强度。 解(1)画轴力图如图b所示。 (2)计算最大工作应力 需分段计算各段的应力,然后选 最大值。
45°
y
B F
Fy 0
x
FN 1 sin 45 F 0
FN 1 28.3kN
Fx 0
FN 1 cos 45 FN 2 0
FN 2 20kN
2、计算各杆件的应力。
FN 1 28.3 103 1 90MPa A1 20 2 4
FN 2 20 103 2 89MPa 2 A2 15
四、应力集中的概念
第5节 平面弯曲梁的应力与强 度计算
弯曲应力
a
A
FP
FP
Hale Waihona Puke a DBCD梁段横截面上
C
FP
只有弯矩,而没有剪力,
这种平面弯曲称为纯 弯曲。
FQ
FP M FPa
AC和DB 梁段横截
面上不仅有弯矩还伴 有剪力,这种平面弯
曲称为横力弯曲。
弯曲应力
一、纯弯曲时梁横截面上的正应力
与圆轴扭转同样,纯弯曲梁横截面上的正应力研究
所以该柱满足强度要求。
轴向拉伸和压缩
例 已知钢筋混凝土组合屋架受到竖直向下的均布荷载 q=10kN/m,水平钢拉杆的许用应力[σ]=160MPa。试按要求 设计拉杆AB的截面。⑴ 拉杆选用实心圆截面时,求拉杆的 直径。⑵ 拉杆选用二根等边角钢时,选择角钢的型号。
q
钢拉杆 8.4m
FAy 解 (1)整体平衡求支反力
二、斜截面上的应力
图示直杆拉力为P 横截面面积A 横截面上正应力为
P
A
α
Aα
P
N P A A
pα P N= Pα σα α τα
斜截面上正应力为
P P p cos cos A A
pα斜截面上的应力称为全应力
P
pα
p cos cos
第1节 应力的概念
一、应力的概念
受力杆件截面上某一点处的内力集度称为该点的应力。 总应力:
FR K
FR dFR p lim A0 A dA
A
总应力p是一个矢量,通常情况下,它既不与截面垂
直,也不与截面相切。 为了研究问题时方便起见,习惯上常将它分解为与截 面垂直的分量σ和与截面相切的分量τ。
正应力σ
与截面垂直 与截面相切
总应力分解为
剪应力τ 工程中应力的单位常用Pa或MPa。 p 1Pa=1N/m2 1MPa=1N/mm2 另外,应力的单位有时也用kPa和GPa,各单位的换算 情况如下: 1kPa=103Pa, 1GPa=109Pa=103MPa 1MPa=106Pa
K
说明:
• 标准圆试件:l0/d0=10或5,常用d=10mm, l0=100mm的试件进行测试。称为标距; • 压缩时,圆截面试件高度h与直径d之比为 1—3。 • 试验通常在室温的条件下按一般的变形速 度进行。在上述条件下所得材料的力学性 质,称为常温、静载下材料在拉伸(压缩) 是的力学性质。
低碳钢在拉伸时的力学性质
受压区 z 中 受拉区 性 层 y 中性轴
由于荷载作用于梁的纵向对称面内,梁的变形沿纵向 对称,则中性轴垂直于横截面的对称轴。梁弯曲变形时, 其横截面绕中性轴旋转某一角度。
弯曲应力
梁中取出的长为dx的微段
1 2 1
2
o2 b 2
o1 o2 a b 1 dx 2
o1 a 1
变形后其两端相对转了d角
轴向拉伸和压缩
例 图示结构,试求杆件AB、CB的应力。已知 F=20kN; 斜杆AB为直径20mm的圆截面杆,水平杆CB为15×15的方 截面杆。 A 1 45° C 2 F 解:1、计算各杆件的轴力。 用截面法取节点B为研究对象
FN 1
B
y
FN 2 45° B
F
x
轴向拉伸和压缩
FN 1
FN 2
2
2
(1 cos 2 )
p sin sin cos
为斜截面上的应力计算公式
2
sin 2
2. 最大应力和最小应力 (1)最大 最小应力正应力 当 α = 00 时 拉杆 σ max = σ 压杆 σ min = - σ
( 2 ) 最大 最小应力剪应力 当 α =+45 0 时
弯曲应力
平面假设:梁变形后其横截面仍保持为平面,且
仍与变形后的梁轴线垂直。同时还假设梁的各纵向纤 维之间无挤压。
单向受力假设:将梁看成由无数条纵向纤维组成,
各纤维只受到轴向拉伸或压缩,不存在相互挤压。
弯曲应力
中性层:梁的下部纵向纤维伸长,而上部纵向纤维缩短 ,由变形的连续性可知,梁内肯定有一层长度不变的纤维 层,称为中性层。 中性轴:中性层与横截面的交线称为中性轴,
AB
FNAB 60103 MPa 0.96MPa AAB 250 250
BC
FNBC 180103 MPa 0.72MPa ABC 500 500
轴向拉伸和压缩
比较得:最大工作应力为压应力,产生在AB段。 即|σmax|=0.96Mpa。 (3)校核强度 σmax=0.96MPa<[σC] =1.05MPa
1 1
ab
1 1
1
2
O1O2
( r y )d rd y rd r
可知:梁内任一层纵向纤维的线应变与其的坐标成正比。
弯曲应力
2. 物理关系方面
由于假设梁内各纵向纤维只受拉伸或压缩,所以当材料 在线弹性范围内工作时,由虎克定律可得各纵向纤维的正应 力为
E
Ey
r
梁横截面上任一点处的正应力与该 点到中性轴的距离成正比。即弯曲正应
方法是:
σ与ε物理关系 观察变形 应力分布
静力学关系 应力计算公式
弯曲应力
1. 几何变形方面
观察纯弯曲梁变形现象
b
z
O x
o
z
y 1 2 y
o1 a
1 2
o2
b
弯曲应力 M
o x z
M
y
M
M
1 2
O
z
o1 a1
1
o2 b1
2
y
所有纵向线都弯成曲线,仍与横向线垂直,靠近凸边的
纵向线伸长了,靠近凹边的纵向线缩短了。 横向线仍为直线但转过了一个角度; 矩形截面的上部变宽下部变窄。