当前位置:文档之家› 微机原理与接口技术(清华大学课件,全套)

微机原理与接口技术(清华大学课件,全套)

64
3. 符号数的算术运算

通过引进补码,可将减法运算转换为加法运算。 即:[X+Y]补=[X]补+[Y]补
[X-Y]补=[X+(-Y)]补
=[X]补+[-Y]补 注:运算时符号位须对齐
65
[例]

X=-0110100,Y=+1110100,求X+Y=?


[X]原=10110100

将指令所在地址赋给程序计数器PC; PC内容送到地址寄存器AR,PC自动加1; 把AR的内容通过地址总线送至内存储器,经地址译码器译码, 选中相应单元。

CPU的控制器发出读命令。
在读命令控制下,把所选中单元的内容(即指令操作码)读到数 据总线DB。 把读出的内容经数据总线送到数据寄存器DR。 指令译码
37
三、无符号二进制数的运算
算术运算
无符号数 二进 制数的运算 有符号数
38
逻辑运算
主要内容

无符号二进 制数的算术运算
无符号数的表达范围 运算中的溢出问题 无符号数的逻辑运算 基本逻辑门和译码器
39
1. 无符号数的算术运算

加法运算

1+1=0(有进位)

减法运算

0-1=1(有借位)
55
[例]

X= -52 = -0110100
[X]原=1 0110100
[X]反=1 1001011
56
0的反码:
[+0]反=00000000
[-0]反 =11111111 即:数0的反码也不是唯一的。
57
补码
定义:

若X>0, 则[X]补= [X]反= [X]原

若X<0, 则[X]补= [X]反+1
H
28
2. 各种进制数间的转换
非十进制数到十进制数的转换
十进制到非十进制数的转换
二进制与十六进制数之间的转换
29
非十进制数到十进制数的转换


按相应的权值表达式展开
例:

1011.11B=1×23+0×22+1×21+1×20+1×2-1+ 1×2-2
=8+2+1+0.5+0.25 =11.75


乘法运算
除法运算
40
乘除运算例

00001011×0100
=00101100B

00001011÷0100=00000010B 即:商=00000010B
余数=11B
41
2. 无符号数的表示范围:
0 ≤ X ≤ 2n-1
若运算结果超出这个范围,则产生溢出。
对无符号数:运算时,当最高位向更高位 有进位(或借位)时则产生 溢出。

机器数

计算机中的数据
构成:

符号位 + 真值
“0” “1”
表示正 表示负
50
[例]
+52 = +0110100 = 0 0110100
符号位 真值
-52 = -0110100 = 1 0110100
符号位
真值
51
1. 符号数的表示

机器数的表示方法:

原码
反码
补码
52
原码

最高位为符号位(用‚0‛表示正,用‚1‛表 示负),其余为真值部分。
42
[例]:
最高位向前有进位,产生溢出
43
3. 逻辑运算

与、或、非、异或 掌握:


与、或、非门逻辑符号和逻辑关系(真值表);
与非门、或非门的应用。
44
“与”、“或”运算

‚与‛运算:

任何数和‚‚1‛相‚或‛,结果为1。
&
&
≥1
≥1
45
“非”、“异或”运算
《微机原理与接口技术实验指导书》(讲义) 陈文革,吴宁,夏秦编. 西安交通大学 《微机原理与接口技术题解及实验指导》(第3版). 吴宁,陈文革编. 清华大学出版社
3

第1章 微型计算机基础概论

主要内容:


微机系统的组成
计算机中的编码、数制及其转换 无符号二进制数的运算

算术运算和逻辑运算 运算中的溢出
系统软件
软件
应用软件
25
二、计算机中的数制和编码

数制和编码的表示 各种计数制之间的相互转换
26
1. 常用计数法
十进制(D) 二进制(B) 十六进制(H)
27
例:

234.98D或(234.98)D
1101.11B或(1101.11)B ABCD . BFH或(ABCD . BF)

写:

CPU将信息放入内存单元,单元中原来的内容被覆盖。
19
内存储器的分类
随机存取存储器(RAM)
按工作方 式可分为
只读存储器(ROM)
20
输入/输出接口

接口是CPU与外部设备间的桥梁
I/O
CPU 接口
外 设
21
接口的分类
串行接口 并行接口 数字接口 输入接口
输出接口
模拟接口
22
接口的功能
理解校验位的作用 熟悉0---F的ASCII码
36
ASCII码的奇偶校验

奇校验

加上校验位后编码中‚1‛的个数为奇数。 例:A的ASCII码是41H(1000001B)

以奇校验传送则为 C1H(11000001B)

偶校验

加上校验位后 编码中‚1‛的个数为偶数。

上例若以偶校验传送,则为 41H。

5B.8H=5×161+11×160+8×16-1 =80+11+0.5 =91.5
30
十进制到非十进制数的转换

到二进制的转换: 对整数:除2取余;
对小数:乘2取整。

到十六进制的转换:
对整数:除16取余;
对小数:乘16取整。
31
二进制与十六进制间的转换

用4位二进制数表示1位十六进制数 例:
34
BCD码与二进制数之间的转换

先转换为十进 制数,再转换二进 制数;反之同 样。 例:


(0001 0001 .0010 0101)BCD =11 .25 =(1011 .01)
B
35
ASCII码

西文 字符的编码,一般用7位二进 制码表示。
D7位为校验位,默认情况下为0。
要求:



因为取出的是指令的操作码,故数据寄存器DR把它送到指令寄存器 IR,然后再送到指令译码器ID 10
冯 • 诺依曼机的特点和不足

特点:

程序存储,共享数据,顺序执行 属于顺序处理机,适合于确定的算法和数值数据的 处理。 与存储器间有大量数据交互,对总线要求很高; 执行顺序有程序决定,对大型复杂任务较困难; 以运算器为核心,处理效率较低; 由PC控制执行顺序,难以进行真正的并行处理。

机器数的表示及运算 基本逻辑门及译码器
4
一、微型计算机系统

微型机的工作原理 微机系统的基本组成
5
1. 计算机的工作原理


诺依曼计算机的工作原理
存储程序工作原理
6
存储程序原理

将计算过程描述为由许多条指令按一定顺序组 成的程序,并放入存储器保存
指令按其在存储器中存放的顺序执行;



‚非‛运算

按位求反

‚异或‛运算

相同则为0,相异则为1
46
4.

译码器
各引脚功能
输入端与输出端关系(真值表)
掌握74LS138译码器

47
74LS138译码器

主要引脚及功能 G1 G2A G2B C B Y0
• • • •
A
Y7
48
三、机器数(有符号数)的运算
49
计算机中符号数的表示

25.5 = 11001.1B = 19.8H 11001010.0110101B =CA.6AH
32

3. 计算机中的编码

BCD码

用二进制编码表示的十进制数

ASCII码

西文字符编码
33
BCD码

压缩BCD码

用4位二进制码表示一位十进制数 每4位之间有一个空格

扩展BCD码

用8位二进制码表示一位十进制数,每4位之间有一 个空格。

内存按单元组织 每单元都对应一个地址,以方便对单元的寻址
单元内容
38F04H
内存地址
10110110
17
内存容量

内存容量:

所含存储单元的个数,以字节为单位

内存容量的大小依CPU的寻址能力而定

实地址模式下为CPU地址信号线的位数
18
内存操作

读:

将内存单元的内容取入CPU,原单元内容不改变;
微机原理与接口技术
大家好!
1
课程目标

掌握:

微型计算机的基本工作原理


汇编语言程序设计方法
微型计算机接口技术 建立微型计算机系统的整体概念,形成微机系统软 硬件开发的初步能力
相关主题