当前位置:文档之家› 人教全国各地中考数学分类:相似综合题汇编

人教全国各地中考数学分类:相似综合题汇编

一、相似真题与模拟题分类汇编(难题易错题)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。

(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。

(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

2.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵ °, ° ,∴ °∵ ,∴∵∥ ,∴∴ °,∴过点作于点 ,则 .在中,∴∴(2)解:在中,,∴∵a.当点在线段上时,过点作于点 ,在中,由(1)可知:,∴∴∴b.当点在线段延长线上时,过点作于点在中, ,在中, ,∴ ,∴(3)解:连接 ,交于点 .∵为的中点∴ ,∴ .∵ ,∴ ,∴ ,∴ ,∴ .∵∥∴ ,∴ ,,∵ ,∴ ,又∵ ,∴∽ ,∴,即 ,∴【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,3.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.根据上述条件,回答下列问题:(1)当矩形OEDC的顶点D在直线AB上时,求t的值;(2)当t=4时,求S的值;(3)直接写出S与t的函数关系式(不必写出解题过程);(4)若S=12,则t=________.【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,∴△BCD∽△BOA,∴而CD=OE=t,BC=8−CO=8− ,OA=4,则8− ,解得t=,∴当点D在直线AB上时,t=(2)解:当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得,即,解得CF=3,∴S= OC(OE+CF)= ×2×(3+4)=7(3)解:①当0<t≤时,S= t2②当<t≤4时,S=-t2+10t−16③当4<t≤16时,S=t2+2t(4)8【解析】【解答】解:(3)①当0﹤t≤时,如图(1),②当<t≤4时,如图(2),∵A(4,0),B(0,8)∴直线AB的解析式为y=-2x+8,∴G(t,-2t+8),F(4-,),∴DF=t-4,DG=t-8,∴S=S矩形COED-S△DFG=t·③当4<t≤16时,如图(3)∵CD∥OA,∴△BCF∽△BOA,∴∴,∴CF=4-,∴S=S△BOA-S△BCF=(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8−CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积公式即可得出函数关系式;②当<t≤4时,如图(2),利用待定系数法,求出直线AB 的解析式,根据和坐标轴平行的直线上的点的坐标特点及直线上的点的坐标特点分别表示出G,F的坐标,进而表示出DF的长,DG的长,根据S=S矩形COED-S△DFG即可得出函数关系式;③当4<t≤16时,如图(3)根据矩形的性质得出CD∥OA,根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似得出△BCF∽△BOA,由相似三角形的对应边成比例得出BC:BO=CF:OA,根据比例式表示出CF的长,再根据S=S△BOA-S△BCF即可得出函数关系式。

4.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s 的速度沿折线C→A→B向点B运动,同时点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为t(单位:s)(0<t<8).(1)当△BDE 是直角三角形时,求t的值;(2)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设它的面积为S,求S关于t的函数关系式;②是否存在某个时刻t,使平行四边形CDEF为菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)解:如图1,当∠BED=90°时,△BDE是直角三角形,则BE=t,AC+AD=2t,∴BD=6+10-2t=16-2t,∵∠BED=∠C=90°,∴DE∥AC,∴,∴,∴DE= ,∵sinB= ,∴,t= ;如图2,当∠EDB=90°时,△BDE是直角三角形,则BE=t,BD=16-2t,cosB= ,∴,∴t= ;答:当△BDE是直角三角形时,t的值为或(2)解:①如图3,当0<t≤3时,BE=t,CD=2t,CE=8-t,∴S▱CDEF=2S△CDE=2× ×2t×(8-t)=-2t2+16t,如图4,当3<t<8时,BE=t,CE=8-t,过D作DH⊥BC,垂足为H,∴DH∥AC,∴,∴,∴DH= ,∴S▱CDEF=2S△CDE=2× ×CE×DH=CE×DH=(8-t)× = t2− t+ ;∴S于t的函数关系式为:当0<t≤3时,S=-2t2+16t,当3<t<8时,S= t2− t+ ;②存在,如图5,当▱CDEF为菱形时,DH⊥CE,由CD=DE得:CH=HE,BH= ,BE=t,EH= ,∴BH=BE+EH,∴ =t+ ,∴t= ,即当t= 时,▱CDEF为菱形.【解析】【分析】(1)因为△BDE 是直角三角形有两种情况:①当∠BED=90°时,可得DE∥AC,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DE用含t的代数式表示,再根据sinB=可得关于t的方程,解方程即可求解;② 当∠EDB=90°时,同理可求解;(2)①当0<t≤3时,S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,过D作DH⊥BC,垂足为H,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DH用含t的代数式表示,则S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,同上;②存在,当▱CDEF为菱形时,DH⊥CE,根据BH=BE+EH可得关于t的方程,解方程即可求解。

5.如图:在中,BC=2,AB=AC,点D为AC上的动点,且 .(1)求AB的长度;(2)求AD·AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH. 【答案】(1)解:作AM⊥BC,∵AB=AC,BC=2,AM⊥BC,∴BM=CM= BC=1,在Rt△AMB中,∵cosB= ,BM=1,∴AB=BM÷cosB=1÷ = .(2)解:连接CD,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,又∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE=∠CAD,∴△EAC∽△CAD,∴ ,∴AD·AE=AC2=AB2=()2=10.(3)证明:在BD上取一点N,使得BN=CD,在△ABN和△ACD中∵∴△ABN≌△ACD(SAS),∴AN=AD,∵AH⊥BD,AN=AD,∴NH=DH,又∵BN=CD,NH=DH,∴BH=BN+NH=CD+DH.【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在Rt△AMB中,根据余弦定义得cosB= ,由此求出AB.(2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得;从而得AD·AE=AC2=AB2.(3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.6.已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE 交AB于点M,DF交AC于点N,连结EF,EF分别交AB、AD、AC于点G、点O、点H.(1)求证:EG=HF;(2)当∠BAC=60°时,求的值;(3)设 ,△AEH和四边形EDNH的面积分别为S1和S2,求的最大值. 【答案】(1)解:在正方形AEDF中,OE=OF,EF⊥AD,∵AD⊥BC,∴EF∥BC,∴∠AGH=∠B,∠AHG=∠C,而AB=AC,∴∠B=∠C,∴∠AGH=∠AHG,∴AG=AH,∴OG=OH,∴OE-OG=OF-OH,∴EG=FH(2)解:当∠BAC=60°时,△ABC为正三角形,∵AD⊥EF,∴∠OAH=30°,∴,设OH=a,则OA=OE=OF= a,∴EH=()a,HF=()a,∵AE∥FN,∴△AEH∽△NFH,∴,∵EF∥BC,∴△AOH∽△ADC,∴,∴CD=2a,易证△HNF∽△CND,∴,∴(3)解:设EH=2m,则FH=2km,OA= EF=(k+1)m,∴S1=(k+1)m2,由(2)得,△AEH∽△NFH,∴S△HNF=k2S1=k2(k+1)m2,而S△EDF=OA2=(k+1)2m2,∴S2=S△EDF - S△HNF =(k+1)2m2 -k2(k+1)m2=(-k2+k+1)(k+1)m2,∴ =-k2+k+1,∴当k= 时,最大= .【解析】【分析】(1)根据等腰三角形的判定与性质,正方形的性质易证△AGH为等腰三角形,通过“三线合一”可得OG=OH,即可得证;(2)由等边三角形的性质可设OH=a,则OA=OE=OF= a,则EH=()a,HF=()a,根据相似三角形判定易证△AEH∽△NFH,△AOH∽△ADC,△HNF∽△CND,然后通过相似三角形的对应边成比整理即可得解;(3)设EH=2m,则FH=2km,OA= EF=(k+1)m,分别得到S1、S△HNF和S△EDF关于k,m的表达式,再根据S2=S△EDF - S△HNF得到S2的表达式,进而得到关于k的表达式,通过配方法即可得解.7.如图,抛物线y= x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D且它的坐标为(3,﹣1).(1)求抛物线的函数关系式;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,并延长DA交y轴于点F,求证:△OAE∽△CFD;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出Q的坐标.【答案】(1)解:∵顶点D的坐标为(3,﹣1).∴, =﹣1,解得b=﹣3,c= ,∴抛物线的函数关系式:y= x2﹣3x+ ;(2)解:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,令x=0,得y= ,∴C(0,),∴CG=OC+OG= +1= ,∴tan∠DCG= ,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,由OE⊥CD,易知∠EOM=∠DCG,∴tan∠EOM=tan∠DCG= ,解得EM=2,∴DE=EM+DM=3,在Rt△AEM中,AM= ,EM=2,由勾股定理得:AE= ;在Rt△ADM中,AM= ,DM=1,由勾股定理得:AD= .∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,∵∠AEO+∠EPH=90°,∠ADC+APD=90°,∠EPH=∠APD(对顶角相等),∴∠AEO=∠ADC,∴△OAE∽△CFD(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,∵y= (x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.将y=1代入y= (x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),∴Q1(3,1);∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,①﹣②得n=2m﹣5③,将③代入到①得到,m1=3(舍),m2= ,再将m= 代入③得n= ,∴Q2(,),此时点Q坐标为(3,1)或(,)【解析】【分析】(1)根据抛物线的顶点坐标及顶点坐标公式建立出关于b,c的二元一次方程组,求解得出b,c的值,从而得出抛物线的解析式;(2)如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,根据抛物线与坐标轴交点的坐标特点求出C点的坐标,A点坐标,进而得出CG的长,根据正切函数的定义求出tan∠DCG=,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,根据同角的余角相等易知∠EOM=∠DCG,根据等角的同名三角函数值相等得出tan∠EOM=tan∠DCG==故解得EM=2,DE=EM+DM=3,在Rt△AEM中,由勾股定理得AE 的长,在Rt△ADM中,由勾股定理得AD的长,根据勾股定理的逆定理判断出△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,根据等角的余角相等得出∠AEO=∠ADC,从而判断出△OAE∽△CFD ;(3)依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,根据抛物线的解析式,整体替换得出EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.然后根据抛物线上点的坐标特点将y=1代入抛物线的解析式,求出对应的自变量x的值,再检验得出P 点的坐标,进而得出Q1的坐标,由切割线定理得到Q2P=Q1P=2,EQ2=1,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,由切割线定理得到Q2P=Q1P=2,EQ2=1,将③代入到①得到,求解并检验得出m,n的值,从而得出Q2的坐标,综上所述即可得出答案。

相关主题