当前位置:文档之家› 信息光学导论第二章9页word

信息光学导论第二章9页word

第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。

2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。

因此,傅立叶分析也称频谱分析。

频谱分为振幅型频谱和相位型频谱。

相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。

为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。

对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。

为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为这里f 称为空间频率. 0f 是f 的基频.。

周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。

◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变),()(md x g x g +=),2,1,( ±±=m ,sin 0λλθnf d n f x =='≈λf x nf f '==0换和逆变换的积分式为 简单地表示为从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。

原函数),(y x g 及其频谱G(y x f f ,),既可以是实数,也可以是复数。

2.2信息光学中常用的若干典型函数的频谱(1)方垒函数.如图*******(a),(b)所示从变换光学眼光看,方垒函数相当平行光正入射于单缝时的被前函数。

其夫琅禾费衍射场正是(******)式给出的sinc 函数形式.(2)相幅型方垒函数.如图******(a),(b)所示.从变换光学眼光看,这相幅型方垒函数,相当于平行光斜入射于单缝时的波前函数,或相当于平行光正入射于薄棱镜时的波前函数,其夫琅禾费衍射场的o 级班中心移至轴外,两侧依然呈现c sin 函数形式,如(******)式所示.(3)准单频函数.如图****所示.准单频函数可以被看作两个相幅型方垒函数之和,从而造成两支频谱,其频谱中心分别在0f ±处.如果,准单频函数代表纯空目信息而与时间变量无关,或代表纯时间信息而与空间变量无关,则这正负两支频谱无独立的物理意义,应将它俩合起来看作—支频谱——谱值加倍,而频率区间缩半于(o ,∞).如果,这准单频函数代表定态波场的复振幅分布,则正负频谱成分有独立含义,各自乘以同一时间因子t i e ω-,就分别代表两个相反方向传播的行波,而复振幅分布x f A 02cos π就表示那两列行波叠加的驻波场.(4)正向准单频函数.其中如图*****所示,展现有二支频谱,均系c sin 函数线型,其中心频率分别为0,0f ±.从变换光学眼光看,这)(x g 相当于平行光正入射于一余弦光栅时的波前函数,其夫琅禾费衍射场有三个离散的亮斑,在亮斑邻近区域有光强的少许扩展,这特点由(******)式所反映.(5)三角形函数. 如图******所示,其频谱恒为正值.含有明显的高频成分,方能合成带有尖顶的角形原函数.(6)半椭圆形函数. 这里)(1αJ 是一阶贝塞耳目数,如图******所示.(7)高斯函数.如图****所示.在函数大家庭中,唯有高斯雨数,其频谱依然是高斯型的,它是一个经傅里叶变换后线型不变的独特函数.凭借这一性质,高斯型光束成为激光器谐振腔中能稳定存在的一种模式.高斯函数也是光源的一种基本的光谱线型,因为由温度引起的谱线的多普勒展宽是高斯型的.导出频谱公式(*****]过程中用到一个高斯积分,(8)洛伦兹函数如图******所示,一钟型原函数其频谱变成一尖顶帐篷型。

(9)二维轴对称函数(圆域函数).在空域(x,y)平面上取极坐标(α,r ),以简化圆域函数的表示称(*******)式为傅里叶—贝塞耳变换.或零阶汉克尔变换,其中J 。

为零阶贝塞耳函数.将(****)式应用于常见的特例——半径为r 的圆孔函数,即 得其频谱为这结果与我们先前介绍过的圆孔夫琅禾费衍射场的表达式是相似的,仅在系数上有点差别.若将其中的ρ改写为我们一直熟悉的空间频率符号f ,且令λθ/sin =f ,角θ是衍射方向与圆心轴即透镜光轴的夹角,那(*******I)式就表示了波长为λ的一光束正入射于圆孔时的夫琅禾费衍射场.◆常用函数的傅里叶变换对2.3卷积◆卷积的定义函数)(x f 和)(x h 的卷积用符号)()(x h x f *表示,它定义为根据积分的几何意义,可以把求卷积理解为求两个函数)(ξf 和)(ξ-x h 重叠部分的面积。

◆卷积的性质 (1)线性性质 (2)交换律 (3)缩放性质 (4)结合律(5)与δ的卷积 ◆卷积的计算(1)图解法为了详细说明图解法的过程,我们选两个函数)(x f 和)(x h 世纪计算器卷积)(x g 。

设)(x f 和)(x h 为实寒暑,如图所示。

其具体数学表达式为图解法求卷积)(x g 有如下四个步骤: 1) 折叠由于卷积满足交换率,根据卷积的定义把任一个函数)(ξf 或)(ξh 相对于纵坐标作出镜像)(ξ-f 或)(ξ-h [这里我们作)(ξh 的景镜像)(ξ-h ]。

为此,虚设积分变量ξ,作出)(ξf 和)(ξ-h 函数图形,如下图所示。

2)位移。

为了得到)(ξ-x f 或)(ξ-x h 需要把)(ξ-f 或)(ξ-h 沿x 轴位移。

为此,要在选一个坐标轴x ,它与ξ平行,并在其上选一个坐标远点,)(ξ-h 平抑一段距离x 便得到)(ξ-x h 。

位移量x 的正负及原点选取的规定为:当x>0时,函数图形)(ξ-h 右移,当x 《0时,函数图形)(ξ-h 左移,当x =0时,函数图形)(ξ-x h =)(ξ-h ,见图****3)相乘。

将)(ξf 与)(ξ-x h 按变量ξ逐点相乘得到)()(ξξ-⋅x h f ,从图形上来看就是这两个函数重叠部分的积。

由于图解过程中)(ξf 保持不变,因此必须沿x 轴来回移动)(ξ-h ,得到对应不同x 值得两函数的乘积。

在x =0情况下,当0<ξ时,0)(=ξf ,则0)()(=-⋅ξξh f ,当1>ξ时,0)(=-ξh ,则乘积0)()(=-⋅ξξh f ,只是当10<<ξ时,0)(≠ξf 和0)(≠-ξh ,乘积0)()(≠-⋅ξξh f ,两函数的成绩为图*****中的直线AB (一般为曲线)。

4)积分。

求出乘积)()(ξξ-⋅x h f 曲线下的面积,即两个函数重叠部分的面积,该面积就是x 出的卷积值。

选择不同的位移量0x x =,就可得到相应的卷积)(0x g ,图*******(b)~(f)分别为)0(g 、)1(-g 、)3(g 、)5(g 。

我们还可以求出其他卷积值并画出x x g ~)(去县,该曲线就是)(x f 和)(x h 的卷积,如图*********(2)解析法解析法就是直接积分⎰∞∞--=*ξξξd x h f x h x f )()()()(求出)(x g 的值。

有图解法求出卷积的结果可见,一般卷积的结果是分段函数,所以积分一般也要分段积分。

由于积分是中含有参变量x ,求积分的关键是确定积分的上下限,一般要与图解法结合起来进行。

以下仍以)(x f 和)(x h 为例说明解析法计算卷积的过程。

根据图解法的结果,卷积可分为以下四段来积分:1)1≤x 。

这时不论x 为何值,)(ξf 与)(ξ-x h 均无重叠部分,乘积0)()(=-⋅ξξx h f ,其积分也等于零。

2)21≤<-x 。

)(ξf 的非零区间为[0,3],由于)(ξh 的非零区间为[-1,2],)(ξ-h 的非零区间为[-2,1],因此,)(ξ-x h 的非零区间为[x x ++-1,2]。

当)0,2(x +-∈ξ时,0)(=ξf ,0)()(=-⋅ξξx h f ;当)3,1(x +∈ξ时,0)(=-ξx h ,0)()(=-⋅ξξx h f 。

因此,)()(ξξ-⋅x h f 的非零区间为[x +1,0],卷积结果为从上面的分析中,可以得到确定上下限的规律。

如果两个函数)(ξf 与)(ξ-x h 的非零区间的上限为1U 和2U ,下限为1L 和2L ,则计算卷积的上限为],m in[21U U ,计算卷积的下限为],m ax [21L L 。

3)52≤<x 。

)(ξf 的非零区间为[0,3],由于)(ξ-x h 的非零区间为[]1,2x x ++-,根据上述选择几分上下限的原则,卷积结果为4)5>x 。

这时0)()(=-⋅ξξx h f ,所以0)(=x g 。

综合以上结果,用解析法计算卷积的结果为:由此可见,用解析法计算卷积于永图解法一样繁琐。

在计算复杂函数的卷积时,一般要把解析法和图解法结合起来进行,图解法用于几分区间的分段,解析法用于计算)()(ξξ-⋅x h f 复杂曲线下的面积。

2.4相关◆相关的定义若)(x f 和)(x h 是实变量的复值函数,函数)(x f 和)(x h 的相关用符号)()(x h x f *⊗或)(x r fh 表示,它定义为式中)(x h *是)(x h 的复共轭函数。

相关主题