当前位置:文档之家› 第十一章习题解答

第十一章习题解答

第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=;(5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各函数是否为所给微分方程的解:(1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得∴ 3sin 4cos y x x =-是方程的解. (3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:(1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得 移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=- ()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 1121C C C =⎧⎨+=⎩∴12 =0 , =1C C , x y xe =(3)12sin cos x C t C t ωωωω'=-+,由00| 1 , |t t x x ω=='==,得 121C C ωω=⎧⎨=⎩∴12 =1 , =1C C , cos sin x t t ωω=+5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(,)x y 处切线的斜率等于该点横坐标的平方;(2)曲线上点(,)P x y 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.解:(1)设曲线的方程为()y y x =,则曲线上点(,)x y 处切线的斜率为y ',由条件知2y x '=,此即为所求曲线的微分方程.(2)设曲线的方程为()y y x =,则曲线上点(,)P x y 处法线的斜率为1y -',由条件知线段PQ 中点的横坐标为0,所以Q 的坐标为(,0)x -,则有即所求曲线的微分方程为 20yy x '+=.习题11-21.求下列微分方程的通解:(1)ln 0;xy y y '-= (2)23550;x x y '+-=(3'= (4)2();y xy a y y '''-=+ (5)cos sin d sin cos d 0;x y x x y y += (6)2d (4)d 0.y x x x y +-= 解:(1)原方程可写为ln 0dyxy y dx-=,分离变量,得d 1,ln y dx y y x = 两端积分,得 11ln dy dx y y x=⎰⎰ 即 ln ln ln ln ln y x C Cx =+=,亦即ln y Cx = ,故通解为Cx y e = (2)原方程可写为235dy x x dx =+,两端分离变量并积分,得 23()5dy x x dx =+⎰⎰, 故通解为231125y x x C =++ .(3)原方程可写为dy dx =,两端分离变量并积分,得=,故通解为arcsin arcsin y x C =+.(4)原方程可写为21dy ay dx x a=--,两端分离变量并积分,得211ady dx y x a =--⎰⎰,故通解为1ln 1a x a C y=+-+.(5)分离变量,得cos cos d d sin sin y x y x y x =- ,两端积分,得 cos cos d d sin sin y xy x y x=-⎰⎰ , 1ln sin ln sin y x C =-+,1ln sin sin x y C ⋅=,故通解为sin sin x y C = ,其中1C C e =±为任意常数.(6)分离变量,得,24dx dyx x y=-积分,得 1144dy dx x x y ⎛⎫+= ⎪-⎝⎭⎰⎰, 即 4ln ln(4)ln ln x x C y --+=,故通解为4(4)x y Cx -=. 2.求下列微分方程满足所给初始条件的特解:(1)20,|0;x y x y e y -='== (2)0cos sin d cos sin d ,|;4x x y y y x x y π===(3)2sin ln ,|;x y x y y y e π='== (4)0cos d (1)sin d 0,|;4xx y x e y y y π-=++==(5)2d 2d 0,|1;x x y y x y =+== (6)220(+)d ()d 0,| 1.x xy x x x y y y y =+-==解:(1)分离变量并积分得, 2y x e dy e dx =⎰,即通解为 212y x e e C =+,由条件0|0x y ==,得112C =+, 12C =,故满足初始条件的特解 21(1)2y x e e =+ .(2)分离变量并积分得,sin sin d d cos cos y xy x y x=⎰⎰, 即 ln(cos )ln(cos )ln y x C -=--, 亦即通解为cos cos y C x =, 由条件0|4x y π==,得 coscos 04C π=,C =故满足初始条件的特解 cos 0x y =. (3)分离变量并积分得,1csc ln dy xdx y y=⎰⎰, 即ln(ln )ln(tan )ln 2x y C =+,亦即通解为ln tan 2xy C =,由条件2|x y e π==,得ln tan 4e C π=,1C =,故满足初始条件的特解ln tan2xy =.(4)分离变量并积分得,tan 1x xe ydy dx e-=+⎰⎰,通解为(1)sec xe y C +=,由条件0|4x y π==,得C =(1)sec x e y +=(5)分离变量并积分得,12dy dx y x=-⎰⎰,通解为2x y C =由条件2|1x y ==,得4C =,故满足初始条件的特解24x y =. (6)分离变量并积分得,2211y x dy dx y x=+-⎰⎰,通解为22(1)(1)x y C -+= 由条件0|1x y ==,得2C =,故满足初始条件的特解22(1)(1)2x y -+=. 3.求下列齐次方程的通解:(1)0;xy y '-= (2)d ln ;d y yxy x x= (3)22()d d 0;x y x xy y +-= (4)332()d 3d 0;x y x xy y +-=(5) ;y xyy e x '=+ (6)(12)d 21d 0.x xy y x e x e y y ⎛⎫++-= ⎪⎝⎭解:(1)原方程可写为dy y dx x =+y u x =,则 ,y ux =d d ,d d y u u x x x =+代入原方程,得dd uu xu x +=1dx x =,积分得 ln(ln ln u x C =+,即u Cx =,亦即 y Cx x +=,原方程的通解2y Cx =.(2)原方程可写为d ln d y y y x x x =,令y u x =,则 ,y ux =d d ,d d y uu x x x=+ 代入原方程,得d ln d uu xu u x+=,分离变量积分得 ()11ln 1du dx u u x =-⎰⎰, 即 ln(ln 1)ln ln u x C -=+,亦即 ln1y Cx x =+,原方程的通解ln 1yCx x=+. (3)原方程可写为d d y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+代入原方程,得d 1d u u xu x u +=+,分离变量积分得 1udu dx x=⎰⎰, 即 22ln u x C =+,,将yu x =代入上式得原方程的通解22(2ln )y x x C =+.(4)原方程可写为22d d 33y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+代入原方程,得2d 1d 33u u u x x u+=+,分离变量积分得 233112u du dx u x =-⎰⎰, 即 311ln(12)ln 2u x C --=+,亦即 3221Cu x =-,其中1C C e =,将y u x =代入上式,得原方程的通解332x y Cx -=. (5)令y u x =,则 ,y ux =d d ,d d y u y u x x x '==+代入原方程,得d d u uu x e u x+=+,即 ln ueCx --=,将yu x=代入上式,得原方程的通解ln 0yx e Cx -+=.(6)原方程可写为12d d 12xy xyx ey x ye ⎛⎫- ⎪⎝⎭=+,令x u y =,则 ,x u y =d d ,d d x u u y y y =+ 代入原方程,得d 2(1)dy 12u u u e u u y e -+=+,分离变量积分得 1212u u e du dy u e y+=-+⎰⎰, 即 ln(2)ln ln u u e y C +=-+,亦即 (2)u y u e C +=,将yu x=代入上式,得原方程的通解2xyx ye C +=4.求下列线性微分方程的通解:(1)d ;d x yy e x-+= (2)232;xy y x x '+=++(3)tan sin 2;y y x x '+= (4)d 32;d ρρθ+=(5)ln d (ln )d 0;y y x x y y +-= (6)2d (6)20.d yy x y x-+=解:(1)原方程是()1P x =,()x Q x e -=的一阶非齐次线性方程.由通解公式得原方程的通解为()()dx dx x xxx x y e e e dx C e ee dx C e x C -----⎛⎫⎰⎰=⋅+=⋅+=+ ⎪⎝⎭⎰⎰.(2)原方程可化为123y y x x x '+=++,它是1()P x x =,2()3Q x x x=++的一阶非齐次线性方程.由通解公式得原方程的通解为()11221332dx dx x x y e x e dx C x x dx C x x -⎡⎤⎛⎫⎰⎰⎡⎤=++⋅+=+++⎢⎥ ⎪⎣⎦⎝⎭⎣⎦⎰⎰213232C x x x =+++; (3)原方程是()tan P x x =,()sin 2Q x x =的一阶非齐次线性方程.由通解公式得原方程的通解为tan tan 2sin 2sin 2cos cos 2cos cos xdx xdx x y e x e dx C x dx C C x x x -⎛⎫⎛⎫⎰⎰=⋅+=+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰. (4)原方程是()3P θ=,()2Q θ=的一阶非齐次线性方程.由通解公式得333332223333d d C C Ce e d e e dx e θθθθθρθ---⎛⎫⎛⎫⎰⎰=⋅+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ,即原方程的通解为 332Ce θρ-=+. (5)原方程可化为1=ln dx x dy y y y +,它是1()ln P y y y =,1()Q y y=的一阶非齐次线性方程.由通解公式得112ln ln 11111ln ln 2ln 2ln 22dy dyy y y y C C C x e e dy ydy y y y y y -⎛⎫⎛⎫⎰⎰⎛⎫=⋅+=⋅+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰, 即原方程的通解为22ln ln x y y C =+. (6)原方程可化为3=2dx x y dy y --,它是3()P y y =-,()2yQ y =-的一阶非齐次线性方程.由通解公式得33323311222dy dy y y y y x e e dy C y dy C y Cy y -⎡⎤⎛⎫⎰⎰⎛⎫=-⋅+=-⋅+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰. 5.求下列微分方程满足所给初始条件的特解:(1)0d tan sec ,|0;d x y y x x y x =-== (2)21d 4,| 2 ;d x y yx y x x =+==(3)cos 2d cot 5,|4;d x x y y xe y x π=+==- (4)0d 38,| 2 d x yy y x =+==.解:(1)由公式可得一阶线性微分方程通解为()tan tan 11sec sec cos cos cos xdxxdx y e x e dx C x xdx C x Cx x -⎡⎤⎰⎰⎡⎤=⋅+=⋅+=+⎢⎥⎣⎦⎣⎦⎰⎰由0|0x y ==得0C =,故特解为cos xy x=. (2)由公式可得一阶线性微分方程通解为由12x y==得1C =,故特解为31y x x=+. (3) 由公式可得一阶线性微分方程通解为 由24x yπ==得1C =,故特解为cos 151sin xy e x⎡⎤=-+⎣⎦,即 cos sin 51x y x e +=. (4)由公式可得一阶线性微分方程通解为由0| 2 x y ==得23C =-,故特解为32(4)3x y e -=-.6.求下列伯努利方程的通解:(1)2d (cos sin );d y y y x x x +=- (2)33d 22 .d yxy x y x+=解:方程两边同除以2y ,得21d cos sin d yy y x x x--+=-令1z y =,2d d y dz y x dx -=-,则原方程变为sin cos dz z x x dx-=-,故 将1z y =代入上式,得原方程通解为1sin x Ce x y =-.1sin x x Ce y=-+; (2)方程两边同除以3y ,得323d 22d yy xy x x--+= 令21z y =,3d 1d 2y dz y x dx -=-,则原方程变为344dz xz x dx-=-,故 将21z y =代入上式,得原方程通解为222212x y Ce x -=++. 7.用适合的变量代换将下列方程化为可分离变量的方程,然后求出通解: (1)2d ();d yx y x=+ (2)d 11;d y x x y =+- (3)(ln ln );xy y y x y '+=+ (4)212x y ye +-'=-.解:(1)令u x y =+,则1dy du dx dx =-,从而原方程可化为21duu dx=+,分离变量积分得21dudx u =+⎰⎰,即arctan x u C =+. 将u x y =+代入,得原方程的通解为arctan()x x y C =++,即tan()y x x C =-++.(2)令u x y =-,则1dy du dx dx =-,从而原方程可化为1du dx u-=,分离变量积分得udu dx =-⎰⎰,即2112x u C +=. 将u x y =-代入,得原方程的通解为2()2x y x C -=-+ (其中12C C =).(3)令u xy =,则2,duxuu dy dx y x dxx-==,从而原方程可化为21()ln du u u u x u x dx x x x -+=,分离变量积分得ln dx dux u u =⎰⎰,即 ln ln ln(ln )x C u +=,亦即C x u e =,将u xy =代入,得原方程的通解为1C x y e x=.(4)令21u x y =+-,则2dy du y dx dx '==-,从而原方程可化为u due dx=,分离变量积分得udx e du -=⎰⎰,即u e C x -=-. 将21u x y =+-代入,得原方程的通解为12ln y x C x =---. 8.判别下列方程中哪些是全微分方程,并求全微分方程的通解:(1)(cos cos )d (sin sin )d 0x y x y y y x x ++-=; (2)2()0x y dx xdy --=; (3)22()0x y dx xydy ++= ; (4)22(1)20e d e d θθρρθ++=. 解:(1)这里(,)sin sin , (,)cos cos P x y y y x Q x y x y x =-=+,cos sin P Qy x y x∂∂=-=∂∂,所以(1)是全微分方程.取000 , 0x y ==, 根据公式00(,)(,)(,)x yx y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为sin cos x y y x C +=.. (2)这里2(,),(,)P x y x y Q x y x =-=-,于是有1P Qy x∂∂=-=∂∂,所以(2)是全微分方程.取000 , 0x y ==,根据公式00(,)(,)(,)xy x y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为33x xy C =+.(3)这里22(,),(,),P x y x y Q x y xy =+=2P y y ∂=∂,Q y x∂=∂,显然P Q y x ∂∂≠∂∂,所以(3)不是全微分方程.(4)22(1)20e d e d θθρρθ++=.这里22(,)1,(,)2P e Q e θθρθρθρ=+=,显然22P Qe θθρ∂∂==∂∂,所以(4)是全微分方程,取000 , 0ρθ==,根据公式0(,)(,)(,)u P d Q d ρθρθρθρθρρθθ=+⎰⎰ ,有于是全微分方程的通解为2(1)e C θρ+=.9.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2x y +.9. 2(1)x y e x =--.解:设曲线的方程为()y y x =,由题意知2y x y '=+,0|0x y ==,于是()()222122dx dx x x x x xy e x e dx C e xe dx C e x e C Ce x ---⎛⎫⎰⎰⎡⎤=⋅+=+=-++=-- ⎪⎣⎦⎝⎭⎰⎰由0|0x y ==,得2C =,于是所求曲线的方程为2(1)x y e x =--10.质量为lg (克)的质点受外力作用作直线运动,这外力和时间成正比,和质点运动的速度成反比.在10s t =时,速度等于50cm/s ,外力为24g cm/s ⋅,问从运动开始经过了一分钟后的速度是多少?解 :已知t F k v =⋅,并且10t s =时50/v cm s =,4/F g cm s =⋅,故10450k =⋅,从而20k =,因此20t F v =⋅.又由牛顿定律F ma =,即201t dvv dt⋅=⋅,故20vdv tdt =,积分得221102v t C =+,即v =,再代入初始条件得2250C =,因此所求特解为v 60t s =时269.3(/)v cm s ==≈.11.镭的衰变有如下的规律:镭的衰变速度与它的现存量R 成正比.由经验材料得知,镭经过1600年后,只余原始量0R 的一半.试求镭的量R 与时间t 的函数关系. 解: 设比例系数0λ>,则由题意可得dR R dt λ=-⋅.分离变量积分可得dR dt Rλ=-⎰⎰,即1ln R t C λ=-+,从而1()C t R C e C e λ-=⋅=,因为0t =时0R R =,所以0R C =,即0t R R e λ-=⋅.又因为1600t =时02R R =,所以1600002R R e λ-=⋅,从而ln 21600λ=,因此镭的量R 与时间t 的函数关系为ln 20.000433160000t t R R eR e --==,.时间以年为单位.12.设有连结点(0,0)O 和(1,1)A 的一段向上凸的曲线弧»OA ,对于»OA 上任一点(,)P x y ,曲线弧»OP与直线段OP 所围图形的面积为2x ,求曲线弧»OA 的方程. 解: 曲线弧»OA的方程为()y y x =,由题意得两边求导得11()()()222y x y x xy x x '--=,即4y y x'=-, 令y u x =,则 ,y ux =d d ,d d y u u x x x =+上式可化为4du x dx=-,分离变量积分得4ln u x C =-+.将y u x=代入,得 4ln y x x Cx =-+. 由于(1,1)A 在曲线上,因此(1)1y =,代入得1C =,从而曲线弧»OA的方程为(14ln )y x x =-,01x <≤;当0x =时0y =.13.设有一质量为m 的质点作直线运动.从速度等于零的时刻起,有一个与运动方向一致、大小与时间成正比(比例系数为1k )的力作用于它,此外还受一与速度成正比(比例系数为2k )的阻力作用.求质点运动的速度与时间的函数关系.解 由牛顿定律知12dv m k t k v dt =-,即21k k dv v t dt m m+=,因此 由0t =时0v =得122k m C k =,故22211122222k k k t t t m m m k k m k m v e te e k k k -⎛⎫=-+ ⎪⎝⎭,即质点运动的速度与时间的函数关系为211222(1)kt m k k m v t e k k -=--. 习题11-31.求下列各微分方程的通解:(1)2290;4d y x dx -= (2);x y xe '''= (3)2(1)2;x y xy '''+= (4)220.1y y y'''-=- 解:(1)原方程变形,得2294d y x dx =, 对所给方程接连积分两次,得2198y x C '=+, 31238y x C x C =++ ,这就是所求的通解. (2)对所给方程接连积分三次,得2123(3)x y x e C x C x C =-+++.这就是所求的通解.(3)令(),y p x y p ''''==,原方程可化为2(1)2x p xp '+=,即221dp xdx p x=+,积分得21ln ln(1)ln p x C =++,亦即21(1)p C x =+,21(1)y C x '=+,所以就是原方程的通解.(4)令()y p y '=,则dp y p dy ''=,原方程化为2201dp p p dy y -=-,即201dp p p dy y ⎡⎤-=⎢⎥-⎣⎦, 当0p =时,得原方程的一个解为y C =,它不是通解;当0p ≠时,约去p ,分离变量积分,得2(1)p y C -=,即2(1)dy C p dx y ==-,从而2(1)y dy Cdx -=,积分得312(1)y C x C -=+,其中13C C =,因此原方程的通解为312(1)y C x C -=+.2.求下列各微分方程满足所给初始条件的特解:(1)111, |||0 ;x x x x y e y y y ===''''''====(2)00| 1 , | 2 ;x x y y y =='''===(3)2000 , ||0 ;y x x y e y y =='''-===(4)31110 , | 1 , |0 x x y y y y =='''+===.解:(1)1+C x x y e dx e ''==⎰,由1|0 x y =''=得,1C e =-,即x y e e ''=-,2()+C x x y e e dx e ex '=-=-⎰,由1|0 x y ='=得,20C =,即x y e ex '=-,23()+C 2x x e y e ex dx e x =-=-⎰,由1|0 x y ==得,32e C =-, 故222x e e y e x =-- 为 原方程的所求特解 .(2)令()y p y '=,那末 dp y p dy ''=,得dp p dy=pdp =, 积分得3221122p y C =+,由00 | 1 , |2x x y y =='==得10C =,从而342y p y '==±,又y ''=,可知342y y '=,即342y dy dx -=,积分得14242y x C =+,由0 | 1 x y ==,得24C =,所以4112y x ⎛⎫=+ ⎪⎝⎭为所求特解.(3)令()y p y '=,那末dp y p dy ''=,得20y dp p e dy -=,即2y pdp e dy =,积分得2211122y p e C =+,由000x x y y =='==得112C =-,从而22()1,y y e y ''=-=,即dx =±,亦即y dx -=±,积分得2arcsin y e x C --=±+,由00x y ==,得22C π=-,所以sin()cos 2y e x x π-=±+=,原方程特解为lnsec y x =. (4) 令y p '=,则dp y p dy ''=,原方程变为31dp y p dy=-,从而3pdp y dy -=-,积分得2121p C y =+,即2121()y C y '=+,由111,0x x y y =='==得11C =-,从而221()1y y '=-,即y '=dy dx =±,积分得2x C =±+,再由11x y ==得21C =m ,因此所求特解为(1)x =±-,即221(1)y x -=-亦即222x y x +=,或y =y =,因为11x y==). 3.试求y x ''=的经过点(0,1)M 且在此点与直线12x y =+相切的积分曲线. 解:由积分曲线经过点(0,1)M 知,01x y==,又由积分曲线在点(0,1)M 与直线12x y =+相切知,012x y ='=. 对方程y x ''=积分得,2112y xdx x C '==+⎰,利用条件012x y ='=,从而112C =,即21122y x '=+,再积分得,3262x x y C =++,利用条件01x y ==,从而21C =, 于是3162x x y =++. 4.下列函数组在其定义区间内哪些是线性无关的?(1)2cos , ;x x (2)22,5 ;x x(3)22,3;x x e e (4)2sin ,1 ;x(5)cos 2,cos sin ;x x x (6)22,;x x e xe(7)ln ,2ln ;x x (8)1212,().x x e e λλλλ≠解:(1)、(4)、(5)、(6)、(8)线性无关.因为:对于定义在区间I 上的两个函数1()y x 与2()y x ,如果1()y x 与2()y x 在区间I 上线性相关,则存在两个不全为0的常数12 , k k ,使得对于∀x I ∈恒有1122()()0k y x k y x +=成立,即12()()y x y x 或21()()y x y x 恒为常数.因而如果12()()y x y x 或21()()y x y x 均不为常数,则称1()y x 与2()y x 在区间I 上一定线性无关.(1)、(4)、(5)、(6)、(8)中的两个函数之比均不为常数,所以这五组函数均线性无关.相反地(2)(3)(7)线性相关.5.验证21x y e -=及62x y e -=都是方程8120y y y '''++=的解,并写出该方程的通解. 解: 因为21x y e -=,22112,4x x y e y e --'''=-=,62x y e -=,66226,36x x y e y e --'''=-=,所以21x y e -=和 62x y e -=都是已知方程的解. 由于24162xx x y e e y e--==不为常数,因此1y 与2y 线性无关,所给方程的通解为2612x x y C e C e --=+.6.验证1sin y x =及2cos y x =都是方程0y y ''+=的解,并写出该方程的通解. 解: 因为1sin y x =,11cos ,sin y x y x '''==-,2cos y x =,22sin ,cos y x y x '''=-=-,所以1sin y x =何2cos y x =都是已知方程的解. 由于12tan y x y =不为常数,因此1y 与2y 线性无关,所给方程的通解为12sin cos y C x C x =+.7.求下列微分方程的通解:(1)3100;y y y '''--= (2)40;y y '''-=(3)20; y y ''+= (4)8160;y y y '''++=(5)22d d 690;d d x x x t t-+= (6)220y y y '''++=. 解:(1)特征方程为23100r r --=,解得122,5r r =-=,故方程的通解2512x x y C e C e -=+.(2)特征方程为240r r -=,特征根为120,4r r ==,故方程的通解为412x y C C e =+.(3)特征方程为220r +=,解得1,2r =,故方程的通解12y C C =+.(4)特征方程为28160r r ++=,特征根为124r r ==-,故方程的通解为412()x y C C x e -=+.(5)特征方程为2690r r -+=,特征根为123r r ==,故方程的通解为312()t x C C t e =+.(6)特征方程为2220r r ++=,特征根为1,21i r ==-±,故方程的通解为12(cos sin )x y e C x C x -=+.8.求下列微分方程满足所给初始条件的特解:(1)00680,|1,|6;x x y y y y y ==''''-+===(2)00440,|2,|0;x x y y y y y ==''''++===(3)00340,|0,|5;x x y y y y y ==''''--===-(4)006130,|3,|1x x y y y y y ==''''++===-.解:(1)特征方程为2680r r -+=,特征根为122,4r r ==,故方程的通解为2412x x y C e C e =+代入初始条件00|1,|6x x y y =='==,得12121246C C C C +=⎧⎨+=⎩,解之得1212C C =-⎧⎨=⎩,从而所求特解为242x x y e e =-+.(2)特征方程为24410r r ++=,特征根为121,3r r ==,故方程的通解为312x x y C e C e =+ 代入初始条件002,0x x y y =='==,得12126310C C C C +=⎧⎨+=⎩,解之得1242C C =⎧⎨=⎩,从而所求特解为342x x y e e =+.(3) 特征方程为2340r r --=,特征根为121,4r r =-=,故方程的通解为412x x y C e C e -=+ 代入初始条件000,5x x y y =='==-,得1212045C C C C +=⎧⎨-+=-⎩,解之得1211C C =⎧⎨=-⎩, 从而所求特解为4x x y e e -=-(4)特征方程为26130r r ++=,特征根为1,232i r ==-±,故方程的通解为312(cos 2sin 2)x y e C x C x -=+代入初始条件00|3,|1x x y y =='==-,得1123321C C C =⎧⎨-+=-⎩,解之得1234C C =⎧⎨=⎩,从而所求特解为3(3cos 24sin 2)x y e x x -=+.9.写出下列各微分方程的待定特解的形式(不用解出):(1)355;x y y y e '''-+= (2)3;y y '''-=(3)2276(521);x y y y x x e '''-+=-- (4)369(1)x y y y x e '''-+=+.解(1)特征方程为2350r r -+=,解得1,231i 22r ==±. 又因为()5x f x e =,1λ=是特征根,故待定特解的形式为*x y ae =.(2)特征方程为20r r -=,特征根为120,1r r ==.又因为()3f x =,0λ=是特征根,故待定特解的形式为*y ax =.(3)特征方程为2760r r -+=,特征根为1216r r ==.又因为22()(521)x f x x x e =--, 2λ=不是特征根,故待定特解的形式为*22()x y ax bx c e =++.(4) 特征方程为2690r r -+=,特征根为123r r ==.又因为3()(1)x f x x e =+,3λ=是特征根,故待定特解的形式为*23()x y x ax b e =+.10.求下列各微分方程满足已给初始条件的特解:(1)sin 20, |1, |1;x x y y x y y ππ=='''++===(2)00325, |1, |2;x x y y y y y ==''''-+===(3)004, |0, |1;x x x y y xe y y =='''-===(4)0045, |1, |0x x y y y y ==''''-===.解:(1)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为12cos sin y C x C x =+因()sin 2f x x =-,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得3cos23sin 2sin 20A x B x x --+=,30 , 310A B -=-+=, 即10,3A B ==, *1sin 23y x =.故原方程的通解为 又122sin cos cos 23y C x C x x '=-++,代入初始条件1,1x x y y ππ=='==,得112211 1,2313C C C C =-⎧⎪⇒=-=-⎨=+⎪⎩, 从而所求特解为11cos sin sin 233y x x x =--+. (2)特征方程为210r +=,解得121,2r r ==,对应齐次方程的通解为 因()5f x =,0λ=不是特征根,所以设原方程的特解为*y A =,代入原方程 ,得 25A = 即 52A =,*52y =.故原方程的通解为 又2122x x y C e C e '=+,代入初始条件00 |1, |2x x y y =='==,得121212517 5,2222C C C C C C ⎧++=⎪⇒=-=⎨⎪+=⎩, 从而所求特解为275522x x y e e =-++.(3)特征方程为2320r r -+=,解得121,1r r ==-,对应齐次的通解为 而()4x f x xe =-,1λ=是特征方程的单根,故可设原方程的特解为代入原方程整理得比较系数,得1,1A B ==-,所以*(1)x y x x e =-.故原方程的通解为 将条件000,1x x y y =='==代入,得1212121 1 , 111C C C C C C +=⎧⇒==-⎨--=-⎩, 从而所求特解为2()x x x y e e x x e -=-+-.(4)特征方程为240r r -=,解得120,4r r ==,对应齐次方程的通解为412x y C C e =+ 因()5f x =,0λ=是特征方程的单根,所以设原方程的特解为*y Ax =,代入原方程 ,得 45A -= 即 54A =-,*54y x =-.故原方程的通解为 又42544x y C e '=-,代入初始条件00|1, |0x x y y =='==,得121221115 ,51616404C C C C C +=⎧⎪⇒==⎨-=⎪⎩, 从而所求特解为4115516164x y e x =+-. 11.设函数()x ϕ连续,且满足求()x ϕ.解: 方程两边同时对x 求导,得0()()xx x e t dt ϕϕ'=-⎰,()()x x e x ϕϕ''=-,(0) 1 , (0)1ϕϕ'== 从而 ()()x x x e ϕϕ''+=又该方程对应齐次方程的特征方程为210r +=,特征根为1,2i r =±,故齐次方程的通解为 通过观察易知*12x e ϕ=为方程()()x x x e ϕϕ''+=的一个特解,从而该方程的通解为 将初始条件(0)1,(0)1ϕϕ'==代入,得11221112 1212C C C C ⎧=+⎪⎪⇒==⎨⎪=+⎪⎩,故总习题十一1.单项选择题:(1)下列微分方程中是线性方程的是( ).(A ) cos()y y e x '+= (B ) 22x xy y x y e '''+-=(C )()250y y '+= (D )sin 8y y x ''+=(2)下列方程中是一阶微分方程的是( ).(A ) 2()20x y yy x ''++= (B ) ()()245750y y y x '''+-+=(C )0xy y y '''++= (D )(4)5cos 0y y x '+-=(3)微分方程20ydy dx -=的通解是( ).(A ) 2y x C -= (B ) 2y x C +=(C )y x C =+ (D )y x C =-+(4)微分方程0y y ''+=满足初始条件001 , 1x x y y =='==的特解是( ).(A ) cos y x = (B ) sin y x =(C )cos sin y x x =+ (D )12cos sin y C x C x =+(5)下列函数是微分方程20y y y '''-+=的解是( ).(A ) 2x x e (B ) 2x x e -(C ) x xe - (D ) x xe解:(1)(B ) ; (2)(A ); (3)(A ); (4)(C ); (5)(D ).2.填空题:(1)以22()1x C y ++=(其中C 为任意常数)为通解的微分方程为 22(1)1y y '+=.(2)以212x x y C e C e =+(其中1C 、2C 为任意常数)为通解的二阶常系数齐次线性微分方程为320y y y '''-+=.(3)微分方程x y y e -'=的通解为y x e e C =+.(4)方程cot 2sin y y x x x '-=的通解为2()sin y x C x =+.(5) 设方程()()()y p x y q x y f x '''++=的三个特解是2123 ,,x x y x y e y e ===,则此方程的通解为2212()()x x x y C x e C x e e =-+-+.3.求下列微分方程的通解:(1)2(12)(1)0y xdx x dy +++=; (2)x y y x +'=-; (3)d d 2(ln )y y x y x =- ; (4)5d d y y xy x-=; (5)20y y y '''+-=; (6)22x y y y e '''+-= ;(7)sin y y x ''+=; (8)25sin 2y y y x '''++=. 解:(1)分离变量积分,得 21121x dy dx y x =-++⎰⎰, 即 ()2ln 12ln(1)ln y x C +=-++,亦即 2(1)(12)x y C ++= 故原方程所求通解为 2(1)(12)x y C ++=.(2) 原方程变形为11y y x'+=-,这是一阶线性方程,其通解为 即原方程通解为22xy x C +=.(3)原方程变形为d 22ln d x y x y y y+=,这是一阶线性方程,其通解为 即原方程通解为21ln 2x Cy y -=+-. (4)这是5n =的伯努利方程. 方程两端同除以5y ,得54dy y y x dx ---=,令4z y -=,便有44dz z x dx+=-,此方程为一阶非齐次线性方程,其通解为 将4z y -=代入,得原方程的通解为4414x y Ce x --=-+. (5)特征方程为220r r +-=,解得122,1r r =-=,故方程的通解、212x x y C e C e -=+.(6)特征方程为2210r r +-=,解得1211,2r r =-=,对应齐次的通解为 而()2x f x e =,1λ=不是特征方程的根,故可设原方程的特解为 代入原方程整理得 1A =,所以*x y e =故原方程的通解为212x x x y C e C e e -=++.(7)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为因()sin f x x =,i i αβ±=±是特征根,所以设原方程的特解为 ()*cos sin y x A x B x =+,又 ()*()sin cos cos sin y x A x B x A x B x '=-+++,()*()2(cos sin )cos sin y B x A x x A x B x ''=--+,代入原方程,得()()2(cos sin )cos sin cos sin sin B x A x x A x B x x A x B x x --+++=,21, 20A B -==, 即1,02A B =-=, *1cos 2y x x =-.故原方程的通解为 (8)25sin 2y y y x '''++=其特征方程为2250r r ++=,特征根为1,212r i =-±,从而其对应齐次方程的通解为12(cos 2sin 2)x y e C x C x -=+.又()sin 2f x x =,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得()()4cos24sin 2sin 2A B x B A x x ++-=,4041 , 411717A B A B B A +=⎧⇒=-=⎨-=⎩,所以*41cos 2sin 21717y x x =-+. 故原方程的通解为1241(cos 2sin 2)cos 2sin 21717x y e C x C x x x -=+-+. 4.求下列微分方程满足所给初始条件的特解: (1)222(3+2)d (2)d 0 , 1x xy y x x xy y x -+-==时1y =;(2)2cos , 0y y y x x '''++==时30 , 2y y '==.解:(1)222(,)3+2 ,(,)2P x y x xy y Q x y x xy =-=-,于是有22P Q x y y x∂∂=-=∂∂,所以方程(1)是全微分方程.因为 所以方程(1)的通解为322x x y xy C +-=,又1x =时,1y =,从而1C =于是原方程的特解为3221x x y xy +-=.(2)特征方程为2210r r ++=,解得121r r ==-,对应齐次方程的通解为因()cos f x x =,i i αβ±=±不是特征根,所以设原方程的特解为*cos sin y A x B x =+,又 *()sin cos y A x B x '=-+,()*()cos sin y A x B x ''=-+,代入原方程,得()cos sin A x B x -+2sin 2cos A x B x -++cos sin cos A x B x x +=,20, 21A B -==, 即10,2A B ==, *1sin 2y x =.故原方程的通解为1sin 2x y xe x -=+ 由条件0x =时30 , 2y y '==,得210 1322C C =⎧⎪⇒⎨+=⎪⎩121,0C C == 所以原方程的特解为1sin 2x y xe x -=+. 5.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程. 解:设曲线的方程为()y y x =,其上任一点(,)x y 处的切线方程为()Y y y X x '-=-,切线在纵轴上的截距为y xy '-,由题意有y xy x '-=,即1y y x'-=-,其通解为 又因为曲线过点(1,1) ,所以1C =,从而所求曲线方程为(1ln )y x x =-.6.设可导函数()x ϕ满足求()x ϕ.解:方程两边同时对x 求导得即()cos ()sin 1x x x x ϕϕ'+=,亦即()tan ()sec x x x x ϕϕ'+=,其通解为在0()cos 2()sin 1xx x t tdt x ϕϕ+=+⎰中,令0x =得(0)1ϕ=,故 因此()cos sin x x x ϕ=+.7.一链条挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m ,分别在以下两种情况下求链条滑下来所需要的时间:(1)若不计钉子对链条产生的摩擦力;(2)若摩擦力为1m 长的链条的重量.解: (1) 设在时刻t 时,较长的一段链条垂下 m x ,且设链条的密度为ρ,则向下拉链条的作用力由牛顿第二定律可知202(10)x g x ρρ''=-,即 10g x x g ''-=- 该方程对应的齐次方程的特征方程为2010g r -=,特征根为1,2r =故对应齐次方程的通解为通过观察知*10x =为非齐次方程10g x x g ''-=-的一个特解,因而原方程的通解为又12t x e '=且(0)12,(0)0x x '==,可得1212122 10C C C C C C +=⎧⇒==⎨-+=⎩,因此10x e=++;当20x =,即链条全部滑下来,有10e =+,解得所需时间t =+(秒). (2) 此时向下拉链条的作用力变为(20)1(221)F x g x g g g x ρρρρ=---⋅=-.由牛顿第二定律可知20(221)x g x ρρ''=-,即 1.0510g x x g ''-=-. 类似于(1)中解法可得此方程通解为1210.5x C e C =++ 由初始条件得1234C C ==,因而所求特解为3310.544x e =++当20x =时有39.54e ⎛⎫=+ ⎪ ⎪⎝⎭,解之得所需时间为19ln(3t +=(秒).。

相关主题